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In this paper, the transverse vibration of a tripldled carbon nanotube

Triple-walled carbon . . . . . .
(TWCNT) conveying fluid flow is studied based onettstrain/inertia

nanotube gradient theory with van der Waals interaction tek#o consideration. The
Knudsen number nanotube is modelled using Euler-Bernoulli beam eh@id the Galerkin’s
Strain-inertia gradient method is employed to obtain the CNT complex valgégen-frequencies.
theory The effects of the fluid flow thorough the innermasbe and the van der

Waals force interaction between any two walls oae thstability of the
nanotube are studied. In addition, the effectshef nano-flow size, the
characteristic lengths and the aspect ratio orctitieal flow velocities are
investigated. Results indicate that due to thalfflow the nanotube natural
frequencies decrease. By considering the size tefféche fluid flow,
frequencies decrease more rapidly causing reducfidhe stability region.
Moreover, it is shown that the length of the nabetgan play an important
role in the vibration response.

.©2015 Iranian Society of Acoustics and Vibratiotl rights reserved

Galerkin’s method

1. Introduction

Carbon nanotubes with their excellent propertiegehapplications in fields such as nanotubes
conveying fluid [1], nano fluidic devices [2], drudelivery devices [3], micromechanical
oscillators, sensors, etc. [4]. To this end, magsearchers focused on the interesting dynamic
characteristics of fluid-structure systems in srsallle [5, 6]. Due to the fact that molecular
dynOamics simulations (MDS) are complex and timescmning, using the classical continuum
mechanics theories can be an effective and usedyl tov study mechanical behaviour of both
single-walled and multi-walled carbon nanotubedidRat al. [7] discussed the effects of taper
ratio and small-scale parameter on the vibrationarf-uniform carbon nanotubes. They reported
that dimensionless frequencies obtained from nahltieeory are less than those obtained from
local ones. Wang [8] utilized nonlocal elasticibegory integrated with surface elasticity theory
to model the fluid conveying nanotubes with inned auter surface layers. He showed that the
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predicted fundamental frequency is generally highan that predicted by the Euler-Bernoulli
beam model without surface effects. Yoon et al. [i®]estigated transverse sound wave
propagation in multi-walled carbon nanotubes (MWGNDBased on the multiple-elastic beam
model. Yan et al. [10] studied the dynamical chiemastics of the fluid-conveying MWCNTSs by
using the classical continuum theory. They repotied the van der Waals (vdW) interaction has
no influence on the bifurcation of the system. Raisét al. [11] presented a model for a single
mode coupled vibration of fluid conveying CNTs ciolesing the slip boundary conditions of
nano flow. They found that the critical flow veltes decrease if the passage fluid is a gas with
nonzero Kn in contrast to a liquid nano flow.

In this research, the effect of small size for bittind flow and solid structure is considered on
the of vibration study of CNT. Also, for the firsine, by using the Euler-Bernoulli beam theory
a model is proposed for the coupled vibrationgipfd-walled carbon nanotubes conveying fluid
flow taking into account the small-size effectsbafth flow fluid and solid structure utilizing
Knudsen number and strain-inertia gradient thetmyaddition, the influences of small-size
effects and aspect ratio on the natural frequeraiesnvestigated. For the numerical solution,
the governing fluid-structure equation is discredizoy using the Galerkin method. It has been
shown that the size-effect has significant inflleenon the non-dimensional critical flow
velocities. Moreover, it is found that the lengthdaCNT radius have effect on the natural
frequencies and critical flow velocities.

2. Strain-inertia gradient theory

The theory of combined strain-inertia gradient éveloped by Askes and Aifantis [12]. They
showed that the combination of equation of motiad ¢he strain-inertia gradient constitutive
relation can be expressed as

p(ui - Inz'lui,mm) = Cijkl(uk, i |§ U jlmrn) (1)
where p is the mass density of nanostructus, are Cartesian components of elasticity tensor

and u, denotes the Cartesian displacements for an elststicture. Alsol,, and |, are the two
length scales related to the inertia and strairdigras respectively, which represent volume
element sizes of electrostatics and electrodynaprmsiems.

According to this theory, the CNT conveying flughrains more stable compared to the classical
theories [13]. Setting =3 and using the linearized strain-displacement icelabf the Euler-
Bernoulli beam theory yields the constitutive riglatfor 1-D Euler-Bernoulli beam model.

The bending moment is

M :J;zadA @

where o denotes the flexural or axial stress. Accordingh® strain-inertia gradient theory, the
stress-strain relation may be written as

d’¢ 9%
—E |2 2
=0, (5 v ] Pdnse ®3)

in which £ is the bending strain that for 1-D strain-flexuzatvature can be written as,
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. [o*w
E=E,="Z aXZ (4)
Finally, by integrating over the beam cross-secti@nea, Eq. (2) gives;
o°w ,0'w 9‘w
M=-El| —-1?— |-pll 2 ——
(ax2 s ax“j ¢ Moxot ©®)

3. Size effect of nano flow

To investigate the small-scale effect of nano fldiv velocity correction factor (VCF) is

inserted into the fluid-structure interaction egomatof motion multiplied by the flow velocity

term. By considering the VCF parameter, the fldig-Boundary condition can be inserted into
the equation of motion. VCF parameter is definetbews [11].

V., -
veF=_—e -1 4(2 UJ( al )+1 ®)
Vio-sip ~ Cr(kn) o, )\1-DbKn
where Vg, and V., are the flow velocities with and without slip balamy conditions

respectively. Alsog, andb are the tangential momentum accommodation coefficand the

general slip coefficient; these two parameters amesidered to be 0.7 and -1 respectively.
ParameterCr is the rarefaction coefficient which is defined falows by using the Polard
relation for viscous fluids [14].

1
Cr(Kn) =
(Kn) 1+ aKn (7)
wherea is a constant obtained as,
2 _
a= — a,[tan™ (a,Kn®)] ®)

in which a, =64/ 37(1- (4b)), a,=0.4 and B=0.4 are practical parameters. In Eq. (6), the

effective parameter is Knudsen number (Kn) thas@més the ratio of the free path of the fluid
molecules to a characteristic length of the flowrgetry. The range of Kn can vary from 0.001
to 0.01 for a liquid nano flow [11].The values b&tparameters in Egs. (6)-(8) are extracted from
[12].

4. Governing equations

Flexural vibration of the Euler-Bernoulli beam mbdestudied using the equations of motion of
the CNTs. The external force can be considerednasx@mpressible, laminar, infinite and

viscous fluid flowing through the CNT. On the otlieand, the TWCNTSs consist of three single
SWCNTSs with the van der Waals interaction betwaantao tubes, as shown in Fig. 1(a). The
fluid flows inside the innermost tube of the CNTad®gd on the strain-inertia gradient theory, the
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innovative governing 1-D coupled fluid-structureeiraction equations of motion for a TWCNT
conveying fluid are derived as

9)
El W |20V\{) +(m, +m, aW+mf(VCI3 U Vy+2 m( VCIF l3—+,oC "W ]

ot C o 6126>€1
oW, _ zaV\é 0°W _

El, (G5 -1 g +m, 6t2 f,

1, V% W SELAL ALY

ox* ax6 e 6t2

whereW,;, W, and\W; denote the flexural displacements of the innermogidle and outermost
CNT walls respectively. Alsa is the axial coordinatd; is the beam’s Young modulus abds
the flow velocity. In additionls, I, andl; are the moments of inertia related to the threksvod

CNT andm, is the fluid mass per unit length. Parametggs m, andm, are the mass per unit
length of inner, middle and outer CNTs respectively

In Eq. (9), f,, f, and f, denote the acting Van der waals interaction foecested on the inner,

middle and outer CNT walls due to the van der Wadkraction among any two walls. These
forces can be expressed as,

f.(x,0)= 12 G(W-Ww) (10)

for i=1,2,3 where ¢, is the van der Waals coefficient for the relatedTCwall that can be
obtained as [10],

1001TEo™ 1120z0°
C'j =" R |: 3a4 %13 - 9a4 E7:| IR (11)
in which
N Y dé@
Ej = (R+ R) _[0 [1- K, co2 e]l/z (12)
_ 4RR
i~ (RJ + R)Z (13)

The equation of motion may be rendered dimensisnlé®r this purpose, the following
dimensionless variables are defined
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where L is the CNT length. Using Eq. (14) the disienless equations of motion can be
expressed as

0'n, .0, 9% 2,207 07 , 0%
—Ai—2+—2+(VCF 1+2 vC Lty L
654 age a 2 (V ) unagz \/El( F)"*\az_ag wl marza£4

—C,(m—n)-Cdn,—ny=0

0 ¢ 03 0% _ _ 15
re G g B A S =0, n) =Bl ) <O 4
0 0° 03 66 _ _

agf A2 agf ,83 ,73 ws m3 Zg}“ _031(/73_’71)_032(’7 3_’79 =0

5. Approximate solution and discr etization

To solve Egs. (15), the Galerkin’'s approximate rmdths used. The solution of the
dimensionless differential equations are approxachais

MENTYAOA@O,  mENTYa 00O, REDTYan R E) s

where q,(7), q.,,(7) and g,y (7) are the generalized coordinate of the discretimadrmost
tube conveying fluid, middle and outermost tubespeetively, andg (¢) are the dimensionless

eigen-functions of the CNTs that should satisfyelsential and natural boundary conditions. In
this work, the boundary conditions are consideregienply supported ends or pinned-pinned
which can be written as,

62
7=0 and a—{z: at §=0,1 17)

For this boundary condition, considering simplenmamic motion, the comparison functions and
generalized coordinate are considered as,

@ (&) =sin(r7E) (18)
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q.(7) = Aexp(sr) (19)

where A are the dimensionless constant amplitude of thgeneralized coordinate ans|
denotes the'rmode complex-valued Eigen-frequency.

To discretize equation of motion by Galerkin wegghtesidual technique, for the first mode, the
wave number is set to 1 and the residual is olddyesubstituting Egs. (16) - (19) into Eq. (15).
In this approximate method, the main governingedéhtial equations of motion are used to
compute the residue. For this purpose, one gemedatioordinate is chosen. In the dimensionless
equations (15), the approximate functig(s,r) is substituted bysin(7z&)x g, (r) to calculate

the residual. Then, this residual is multiplieddweighting function (test function). Herein, the
comparison and weighting functions are the same ardselected as the first mode Eigen-
function (sin(7z)). The resulting weighted residual is then integtadeer the domain of the
structure and then it is set to zero. This meaasttie error in the subspace spanned by the trial
functions is nullified and only the residual eramthogonal to this subspace would remain. This
residual could have components in the complemensatyspace of the exact solution not
spanned by the information subspace. The trial nefgactions play the role of the basis
functions that span the complementary space ofitefdimensional space spanning the exact
solution. For example, the resulting discretizedatigpn for the innermost tube conveying fluid
is obtained as follows

2+ Az - (VCR) ) q(r) + S (w4 1) () =0 0)

The coefficient ofg,(r) denotes the sum of elastic and geometric stiffpesameters and the
coefficient of ¢,(r) represents the equivalent mass paramétes process is continued for the

next modes; for example, to study the two first emydhe approximate function is considered as
Sin( ), () + sin(2%) (7).

6. Results and discussion

The material and geometric properties of the CNd tée fluid are shown in Table 1. Results are
extracted from the dimensionless parameters amgj assMATLAB code. Water is considered as
the fluid passing through the CNT. The effects lo¢ taspect ratio, Knudsen number and
characteristic lengths on the critical flow velaestare studied.

Table 1. Material and geometric properties of CNT and fljiid]

Young’s modulus (E) 1Tpa Fluid viscosity ({/) 1.12x% 10%Pa.s
CNT mass densityQ, ) 2.3% 10 kgm' Fluid mass densityQ, )  1x10°kgm*
Geometric parameters R =11.9nm R,=12.24nm R,=12.58nm h=0.34nm
van der Waals parameters £=2.968meV o =3.407 A a=1.42 A
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In Table 1, the parameteiR, R, and R, are the internal radii of the inner, middle andeou
CNTs respectively. These parameters are showrpinlFi

x Fluid out

(a)

Fig. 1. (a) A fluid conveying TWCNT. (b) Cross section#&w of a circular TWCNT

6.1. Effects of aspect ratio

In this subsection, the effects of aspect ratiotlom critical flow velocity and the vibration
behavior of CNTs conveying fluid flow are studiesing size dependent continuum theory. The
critical velocity is a velocity in which the imagiry part of Eigen frequency (natural frequency)
reaches zero while its real part (damping) is nero-zand therefore the system is instable.
According to Paidoussis [15], by equating the eglant stiffness of a system {d to zero, the
critical value of fluid flow velocity will be obtaed. In this case, the divergence instability
occurs in the system. Fig. 2 shows the variatiodiofensionless critical flow velocity against
CNT thickness for the four aspect ratio values,d,15 and 10. It can be seen that by increasing
the CNT thickness the critical flow velocity decsea. Moreover, the effect of aspect ratio on the
critical flow velocity increases as the CNT thickeedecreases. Fig. 3 illustrates the imaginary
parts of dimensionless fundamental Eigen-frequentoe the nanotube versus dimensionless
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Fig. 2. Dimensionless critical flow velocity against dinsganless CNT thickness 68
for different aspect ratios
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flow velocity for the aspect ratio values of 1 &dand the dimensionless length scale values of
0.0355 and 0.1. According to Askes and Aifantig[1@ the length scaldg, andls large ranges
are possiblej =10, is used here for CNT (20, 20). It can be obsethati for a certain aspect

ratio, the critical flow velocity increases as tttearacteristic length decreases. For example, by
using Table.1, for aspect ratios equal to 1 andpproximately 2.30% and 0.58% reductions

occur in the magnitude of the critical flow veloe# respectively. It means that the divergence
instability occurs at a lower critical flow velogit

i PR B

L/R,=1,1=0.0355 |
i IRy 101
N —.—.=.  LR,~2,170.0355 |

%

First dimensionless natural f?t:'ﬁ;\'”l‘.,’?.il‘.ft".a
—m
&
A ' ! C\"-‘

Dimensionless flow velocity

Fig. 3. First dimensionless natural frequency against dsimmless flow velocity for different
aspect ratios and characteristic lengths

6.2. Effect of Kn of nano flow

The first and second dimensionless natural fregaesragainst dimensionless flow velocity for
three values oKn are shown in Fig. 4 and 5 respectively. By compgatite values of the critical
flow velocities forKn equal to 0, 0.001 and 0.01, the divergence angledumode flutter
phenomena occur at a lower critical flow velocity nudsen number increases. As shown in
Figs. 4 and 5, approximately 4.2% and 17.1% redustioccur for increasing the Knudsen
number from 0 to 0.001 and from 0.001 to 0.01 respely. Moreover, as the flow velocity
increases, the effect of small-size of nano flovttennatural frequencies increases.

In order to validate the numerical results, thaultssof Paidoussis [15] are considered. Since
Paidoussis investigated the plug flow theory, tmud#sen number is set equal to zero or VCF is
substituted by one in Eq. (15). From Figs. 4 andcan be observed that by increasing the flow
velocity from zero to its critical value, the nalifrequencies approach to zero; as a result, the
system’s stiffness disappears and divergence moder& As shown in Fig. 4 the first mode
divergence is equal ta which is expected from the Paidoussis observa{ibbis
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Fig 4. First dimensionless natural frequency versus flelocity for three values of
Knudsen number (Kn=0, 0.001 and 0.01)
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Fig5. Second dimensionless natural frequency versus\gocity for three values of
Knudsen number (Kn=0, 0.001 and 0.01)

6.3. Simulations of the divergence and flutterabsities

Fig. 6 shows the variations of the dimensionlessimah frequencies versus the dimensionless
flow velocities for the first three modes. The Ksad number is set to be 0.01 and the
characteristic length related to the strain gradisrequal to 0.0355. Also, the aspect ratio is
considered to be L/Rout=1000. It should be noted tine van der Waals force is the coefficient
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of the W term in Egs. (9) and (10). Hence, by addinese forces, it is expected that the
equivalent stiffness be increased. By setting shiffness term equal to zero, it can be seen that
the critical flow velocity value increases. It meathat considering the van der Waals force
makes the system more stable. Moreover, the dimelesis natural frequencies of three modes
decrease as the dimensionless flow velocity ine®aBy increasing the flow velocity, the first
natural frequency reaches to zero at the crititad fvelocity value of 2.576 and the system
becomes unstable, known as the first divergendabiigy. Next, by increasing the flow velocity
to 4.813, the system becomes stable again. Apthit, the frequencies of the first and second
modes are coupled which is called the flutter iniditg. The same phenomenon is occurred at
the critical flow velocity equal to 7.219 in whide third divergence and second flutter
instabilities occur.

100 T

B — (P— T Y I w— PER—— .. W —
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Fig 6. Dimensionless flow velocity dependence of the letthree modes of a TWCNT

7. Conclusions

The free vibration and instabilities of TWCNT cowgirgg fluid flow were investigated
considering the small-size effects of both fluidwil and the structure by using strain-inertia
gradient theory. To study the vibration responise,Euler- Bernoulli beam model is used and to
calculate the governing equation of fluid-structumeraction, the Galerkin weighted residual
method is employed. The variations of the dimerisgm critical flow velocities and
dimensionless frequencies for different aspecosaéind characteristic lengths in the mentioned
theory were examined. It is shown that the flowidasCNTs decreases the system natural
frequencies. It means that the fluid flow can datitee the fluid-structure system. Also it is
shown that by increasing the Knudsen number ofpesing nano flow, instability occurs at a
lower flow velocity value. The results indicate tthhe critical flow velocity increases as the
thickness or outer radius of CNT decreases anecitedises as the CNT length increases.
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