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In this paper, the transverse vibration of a triple-walled carbon nanotube 
(TWCNT) conveying fluid flow is studied based on the strain/inertia 
gradient theory with van der Waals interaction taken into consideration. The 
nanotube is modelled using Euler-Bernoulli beam model and the Galerkin’s 
method is employed to obtain the CNT complex valued Eigen-frequencies. 
The effects of the fluid flow thorough the innermost tube and the van der 
Waals force interaction between any two walls on the instability of the 
nanotube are studied. In addition, the effects of the nano-flow size, the 
characteristic lengths and the aspect ratio on the critical flow velocities are 
investigated. Results indicate that due to the fluid flow the nanotube natural 
frequencies decrease. By considering the size effect of the fluid flow, 
frequencies decrease more rapidly causing reduction of the stability region. 
Moreover, it is shown that the length of the nanotube can play an important 
role in the vibration response. 

.©2015 Iranian Society of Acoustics and Vibration, All rights reserved 

1. Introduction 

Carbon nanotubes with their excellent properties have applications in fields such as nanotubes 
conveying fluid [1], nano fluidic devices [2], drug delivery devices [3], micromechanical 
oscillators, sensors, etc. [4]. To this end, many researchers focused on the interesting dynamic 
characteristics of fluid-structure systems in small-scale [5, 6]. Due to the fact that molecular 
dyn0amics simulations (MDS) are complex and time consuming, using the classical continuum 
mechanics theories can be an effective and useful way to study mechanical behaviour of both 
single-walled and multi-walled carbon nanotubes. Rafiei et al. [7] discussed the effects of taper 
ratio and small-scale parameter on the vibration of non-uniform carbon nanotubes. They reported 
that dimensionless frequencies obtained from nonlocal theory are less than those obtained from 
local ones. Wang [8] utilized nonlocal elasticity theory integrated with surface elasticity theory 
to model the fluid conveying nanotubes with inner and outer surface layers. He showed that the 
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predicted fundamental frequency is generally higher than that predicted by the Euler-Bernoulli 
beam model without surface effects. Yoon et al. [9] investigated transverse sound wave 
propagation in multi-walled carbon nanotubes (MWCNTs) based on the multiple-elastic beam 
model. Yan et al. [10] studied the dynamical characteristics of the fluid-conveying MWCNTs by 
using the classical continuum theory. They reported that the van der Waals (vdW) interaction has 
no influence on the bifurcation of the system. Rashidi et al. [11] presented a model for a single 
mode coupled vibration of fluid conveying CNTs considering the slip boundary conditions of 
nano flow. They found that the critical flow velocities decrease if the passage fluid is a gas with 
nonzero Kn in contrast to a liquid  nano flow. 

In this research, the effect of small size for both fluid flow and solid structure is considered on 
the of vibration study of CNT. Also, for the first time, by using the Euler-Bernoulli beam theory 
a model is proposed for the coupled vibrations of triple-walled carbon nanotubes conveying fluid 
flow taking into account the small-size effects of both flow fluid and solid structure utilizing 
Knudsen number and strain-inertia gradient theory. In addition, the influences of small-size 
effects and aspect ratio on the natural frequencies are investigated. For the numerical solution, 
the governing fluid-structure equation is discretized by using the Galerkin method. It has been 
shown that the size-effect has significant influence on the non-dimensional critical flow 
velocities. Moreover, it is found that the length and CNT radius have effect on the natural 
frequencies and critical flow velocities. 

2. Strain-inertia gradient theory 

The theory of combined strain-inertia gradient is developed by Askes and Aifantis [12]. They 
showed that the combination of equation of motion and the strain-inertia gradient constitutive 
relation can be expressed as 

 2 2
, , ,( ) ( )i m i mm ijkl k jl s k jlmmu l u C u l uρ − = −&& &&  (1) 

where ρ  is the mass density of nanostructure, ijklC  are Cartesian components of elasticity tensor 

and iu  denotes the Cartesian displacements for an elastic structure. Also ml  and sl  are the two 

length scales related to the inertia and strain gradients respectively, which represent volume 
element sizes of electrostatics and electrodynamics problems. 

According to this theory, the CNT conveying fluid remains more stable compared to the classical 
theories [13]. Setting 3i =  and using the linearized strain-displacement relation of the Euler-
Bernoulli beam theory yields the constitutive relation for 1-D Euler-Bernoulli beam model. 

The bending moment is 

 
A

M z dAσ= ∫  
(2) 

where σ  denotes the flexural or axial stress. According to the strain-inertia gradient theory, the 
stress-strain relation may be written as 

 2 2
2 2

2 2xx s c mE l l
x t

ε εσ σ ε ρ ∂ ∂= = − + ∂ ∂ 
 (3) 

in which ε  is the bending strain that for 1-D strain-flexural curvature can be written as,  



S. Oveissi and H. Nahvi / Journal of Theoretical and Applied Vibration and Acoustics 1(2) 62-72 (2015) 

64 
 

 2

2xx

w
z

x
ε ε  ∂= = −  ∂ 

 (4) 

Finally, by integrating over the beam cross-sectional area, Eq. (2) gives; 

 2 4 4
2 2

2 4 2 2s c m

w w w
M EI l Il

x x x t
ρ ∂ ∂ ∂= − − − ∂ ∂ ∂ ∂ 

 (5) 

3. Size effect of nano flow 

To investigate the small-scale effect of nano flow, the velocity correction factor (VCF) is 
inserted into the fluid-structure interaction equation of motion multiplied by the flow velocity 
term. By considering the VCF parameter, the fluid slip-boundary condition can be inserted into 
the equation of motion. VCF parameter is defined as follows [11]. 

 

( )

1 2
4 1

( ) 1
slip v

no slip v

V Kn
VCF

V Cr kn bKn

σ
σ−

  −  = = +   −   
 (6) 

where slipV  and ( )no slipV −  are the flow velocities with and without slip boundary conditions 

respectively. Also vσ  and b are the tangential momentum accommodation coefficient and the 

general slip coefficient; these two parameters are considered to be 0.7 and -1 respectively. 
Parameter Cr is the rarefaction coefficient which is defined as follows by using the Polard 
relation for viscous fluids [14].  

 1
( )

1
Cr Kn

Knα
=

+
 (7) 

where α  is a constant obtained as, 

 1
0 1

2
[tan ( )]BKnα α α

π
−=  (8) 

in which 0 64 3 (1 (4 ))bα π= − , 1 0.4α =  and 0.4B =  are practical parameters. In Eq. (6), the 

effective parameter is Knudsen number (Kn) that presents the ratio of the free path of the fluid 
molecules to a characteristic length of the flow geometry. The range of Kn can vary from 0.001 
to 0.01 for a liquid nano flow [11].The values of the parameters in Eqs. (6)-(8) are extracted from 
[12]. 

4. Governing equations 

Flexural vibration of the Euler-Bernoulli beam model is studied using the equations of motion of 
the CNTs. The external force can be considered as an incompressible, laminar, infinite and 

viscous fluid flowing through the CNT. On the other hand, the TWCNTs consist of three single 
SWCNTs with the van der Waals interaction between any two tubes, as shown in Fig. 1(a). The 
fluid flows inside the innermost tube of the CNT. Based on the strain-inertia gradient theory, the 
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innovative governing 1-D coupled fluid-structure interaction equations of motion for a TWCNT 
conveying fluid are derived as 

  (9) 

1

2

3

4 6 2 2 2 6
2 2 2 21 1 1 1 1 1

1 14 6 2 2 2 4

4 6 2
22 2 2

2 24 6 2

4 6 2
23 3 3

3 34 6 2

( ) ( ) ( ) 2 ( )

( )

( )

s c f f f c m

s c

s c

W W W W W W
EI l m m m VCF U m VCF U Il f

x x t x t x t x

W W W
EI l m f

x x t

W W W
EI l m f

x x t

ρ∂ ∂ ∂ ∂ ∂ ∂− + + + + + =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂− + =
∂ ∂ ∂

∂ ∂ ∂− + =
∂ ∂ ∂

 

where W1, W2 and W3 denote the flexural displacements of the innermost, middle and outermost   
CNT walls respectively. Also x is the axial coordinate, E is the beam’s Young modulus and U is 
the flow velocity. In addition, I1, I2 and I3 are the moments of inertia related to the three walls of 
CNT and fm  is the fluid mass per unit length. Parameters 

1c
m , 

2cm  and 
3c

m  are the mass per unit 

length of inner, middle and outer CNTs respectively. 

In Eq. (9), 1f , 2f  and 3f  denote the acting Van der waals interaction forces exerted on the inner, 

middle and outer CNT walls due to the van der Waals interaction among any two walls. These 
forces can be expressed as, 

 3

1,

( ,0) ( )i ij i j
j i j

f x c W W
= ≠

= −∑  (10) 

for 1,2,3i =  where ijc  is the van der Waals coefficient for the related CNT wall that can be 

obtained as [10], 

 12 6
13 7

4 4

1001 1120

3 9ij i ij ij jc R E E R
a a

πεσ πεσ 
= − − 

 
 (11) 

in which 

 2

2 20
( )

[1 cos ]
n n
ij i j l

ij

d
E R R

K

π θ
θ

−= +
−∫  (12) 

 
2

4

( )
j i

ij
j i

R R
K

R R
=

+
 (13) 

The equation of motion may be rendered dimensionless. For this purpose, the following 
dimensionless variables are defined 

 



S. Oveissi and H. Nahvi / Journal of Theoretical and Applied Vibration and Acoustics 1(2) 62-72 (2015) 

66 
 

 

1

1 1 1

1 1
2 2

1 2 3 1
1 2 3 2

1

2 1 3 1
1 2 3

2 3

4 4 4 4 4 4
12 13 21 23 31 32

12 13 21 23 31 32
1 1 2 2 3 3

1

, , , , , ,

, , ,
( ) ( )

c c c c c c
c , c , c , c , c , c

f
n

f c

f

f c f c f c

c

mx W W W EI t
u LU

L L L L m m L EI

m m I m I

m m m m I m m I

L L L L L L

EI EI EI EI EI EI

ξ η η η τ

β β β

ρ
ψ

   
= = = = = =   +    

= = =
+ + +

= = = = = =

= 31 2

1 2 3

31 2
2 32 2 2

, , , ,
( ) ( ) ( )

cc m s
m s

f c c c

II I l l

L m m L m L m L L

ρρ
ψ ψ λ λ= = = =

+

 
(14) 

where L is the CNT length. Using Eq. (14) the dimensionless equations of motion can be 
expressed as 

 4 6 2 2 2 6
2 2 2 21 1 1 1 1 1

1 14 6 2 2 2 4

12 1 2 13 1 3

4 6 2 6
2 22 2 2 2

2 2 21 2 1 23 2 34 6 2 2 4

4 6 2
23 3 3

34 6 2

( ) 2 ( )

( ) ( ) 0
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c c
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η η η η η ηλ β ψ λ
ξ ξ τ ξ τ ξ τ ξ

η η η η
η η η ηλ β ψ λ η η η η
ξ ξ τ τ ξ
η η ηλ β ψ
ξ ξ τ

∂ ∂ ∂ ∂ ∂ ∂− + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

− − − − =

∂ ∂ ∂ ∂− + + − − − − =
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂− + +
∂ ∂ ∂

6
2 3

3 31 3 1 32 3 22 4
( ) ( ) 0m c c

ηλ η η η η
τ ξ
∂ − − − − =

∂ ∂

 (15) 

5. Approximate solution and discretization 

To solve Eqs. (15), the Galerkin’s approximate method is used. The solution of the 
dimensionless differential equations are approximated as 

 
1 2 3 2

1 1 1

( , ) ( ) ( ), ( , ) ( ) ( ), ( , ) ( ) ( )
N N N

r r r N r r N r
r r r

q q qη ξ τ τ φ ξ η ξ τ τ φ ξ η ξ τ τ φ ξ+ +
= = =

≅ ≅ ≅∑ ∑ ∑  (16) 

where ( )rq τ , ( )r Nq τ+  and 2 ( )r Nq τ+  are the generalized coordinate of the discretized innermost 

tube conveying fluid, middle and outermost tubes respectively, and ( )rφ ξ  are the dimensionless 
eigen-functions of the CNTs that should satisfy the essential and natural boundary conditions. In 
this work, the boundary conditions are considered as simply supported ends or pinned-pinned 
which can be written as, 

 0η =     and    
2

2
0

η
ξ

∂ =
∂

       at     0,1ξ =  (17) 

For this boundary condition, considering simple harmonic motion, the comparison functions and 
generalized coordinate are considered as, 

 ( ) sin( )r rφ ξ πξ=  (18) 
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 ( ) exp( )r r rq A sτ τ=  (19) 

where rA  are the dimensionless constant amplitude of the rth-generalized coordinate and rs   

denotes the rth mode complex-valued Eigen-frequency. 

To discretize equation of motion by Galerkin weighted-residual technique, for the first mode, the 
wave number is set to 1 and the residual is obtained by substituting Eqs. (16) - (19) into Eq. (15). 
In this approximate method, the main governing differential equations of motion are used to 
compute the residue. For this purpose, one generalized coordinate is chosen. In the dimensionless 
equations (15), the approximate function ( , )η ξ τ  is substituted by 1sin( ) ( )qπξ τ×  to calculate 

the residual. Then, this residual is multiplied by a weighting function (test function). Herein, the 
comparison and weighting functions are the same and are selected as the first mode Eigen-
function (sin( )πξ ). The resulting weighted residual is then integrated over the domain of the 
structure and then it is set to zero. This means that the error in the subspace spanned by the trial 
functions is nullified and only the residual error orthogonal to this subspace would remain. This 
residual could have components in the complementary subspace of the exact solution not 
spanned by the information subspace. The trial eigen-functions play the role of the basis 
functions that span the complementary space of infinite-dimensional space spanning the exact 
solution. For example, the resulting discretized equation for the innermost tube conveying fluid 
is obtained as follows 

 ( ) ( )4 2 6 2 2 2 2 4
1 1 1

1 1
( ) ( ) 1 ( ) 0

2 2s n mVCF u q qπ λ π π τ ψ λ π τ+ − + + =&&  (20) 

The coefficient of 1( )q τ  denotes the sum of elastic and geometric stiffness parameters and the 

coefficient of 1( )q τ&&  represents the equivalent mass parameter. This process is continued for the 

next modes; for example, to study the two first modes, the approximate function is considered as 

1 2sin( ) ( ) sin(2 ) ( )q qπξ τ πξ τ+ . 

6. Results and discussion 

The material and geometric properties of the CNT and the fluid are shown in Table 1. Results are 
extracted from the dimensionless parameters and using a MATLAB code. Water is considered as 
the fluid passing through the CNT. The effects of the aspect ratio, Knudsen number and 
characteristic lengths on the critical flow velocities are studied.  

Table 1. Material and geometric properties of CNT and fluid [10] 

Young’s modulus (E) 1 Tpa Fluid viscosity (µ ) 31.12 10−× Pa.s 

CNT mass density( cρ ) 32.3 10× kgm-1 Fluid mass density( fρ ) 31 10× kgm-1 

Geometric parameters 
1 11.9 R nm=

 2 12.24 R nm=
 3 12.58 R nm=

 
0.34 h nm=  

van der Waals  parameters             2.968 meVε =  A3.407 σ =
o

 1.42 Aa =
o
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In Table 1, the parameters 1R , 2R  and 3R  are the internal radii of the inner, middle and outer 

CNTs respectively. These parameters are shown in Fig. 1. 

 
Fig. 1. (a) A fluid conveying TWCNT. (b) Cross sectional view of a circular TWCNT 

6.1. Effects of aspect ratio 

In this subsection, the effects of aspect ratio on the critical flow velocity and the vibration 
behavior of CNTs conveying fluid flow are studied using size dependent continuum theory. The 
critical velocity is a velocity in which the imaginary part of Eigen frequency (natural frequency) 
reaches zero while its real part (damping) is non-zero and therefore the system is instable. 
According to Paidoussis [15], by equating the equivalent stiffness of a system (Keq) to zero, the 
critical value of fluid flow velocity will be obtained. In this case, the divergence instability 
occurs in the system. Fig. 2 shows the variation of dimensionless critical flow velocity against 
CNT thickness for the four aspect ratio values of 1, 2, 5 and 10. It can be seen that by increasing 
the CNT thickness the critical flow velocity decreases. Moreover, the effect of aspect ratio on the 
critical flow velocity increases as the CNT thickness decreases. Fig. 3 illustrates the imaginary 
parts of dimensionless fundamental Eigen-frequencies for the nanotube versus dimensionless 

Fig. 2. Dimensionless critical flow velocity against dimensionless CNT thickness 
for different aspect ratios 
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flow velocity for the aspect ratio values of 1 and 2, and the dimensionless length scale values of 
0.0355 and 0.1. According to Askes and Aifantis [12], for the length scales lm and ls large ranges 
are possible; 10m sl l=  is used here for CNT (20, 20). It can be observed that for a certain aspect 

ratio, the critical flow velocity increases as the characteristic length decreases. For example, by 
using Table.1, for aspect ratios equal to 1 and 2, approximately 2.30% and 0.58% reductions 
occur in the magnitude of the critical flow velocities respectively. It means that the divergence 
instability occurs at a lower critical flow velocity. 

 
Fig. 3. First dimensionless natural frequency against dimensionless flow velocity for different 

aspect ratios and characteristic lengths 

 6.2. Effect of Kn of nano flow  

The first and second dimensionless natural frequencies against dimensionless flow velocity for 
three values of Kn are shown in Fig. 4 and 5 respectively. By comparing the values of the critical 
flow velocities for Kn equal to 0, 0.001 and 0.01, the divergence and coupled mode flutter 
phenomena occur at a lower critical flow velocity as Knudsen number increases. As shown in 
Figs. 4 and 5, approximately 4.2% and 17.1% reductions occur for increasing the Knudsen 
number from 0 to 0.001 and from 0.001 to 0.01 respectively. Moreover, as the flow velocity 
increases, the effect of small-size of nano flow on the natural frequencies increases.  

In order to validate the numerical results, the results of  Paidoussis [15] are considered. Since 
Paidoussis investigated the plug flow theory, the Knudsen number is set equal to zero or VCF is 
substituted by one in Eq. (15). From Figs. 4 and 5 it can be observed that by increasing the flow 
velocity from zero to its critical value, the natural frequencies approach to zero; as a result, the 
system’s stiffness disappears and divergence mode occurs. As shown in Fig. 4 the first mode 
divergence is equal to π  which is expected from the Paidoussis observations [15]. 
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Fig 4. First dimensionless natural frequency versus flow velocity for three values of 

Knudsen number (Kn=0, 0.001 and 0.01) 

 
Fig 5.  Second dimensionless natural frequency versus flow velocity for three values of 

Knudsen number (Kn=0, 0.001 and 0.01) 

6.3. Simulations of the divergence and flutter instabilities 

Fig. 6 shows the variations of the dimensionless natural frequencies versus the dimensionless 
flow velocities for the first three modes. The Knudsen number is set to be 0.01 and the 
characteristic length related to the strain gradient is equal to 0.0355. Also, the aspect ratio is 
considered to be L/Rout=1000. It should be noted that the van der Waals force is the coefficient 
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of the W term in Eqs. (9) and (10). Hence, by adding these forces, it is expected that the 
equivalent stiffness be increased. By setting this stiffness term equal to zero, it can be seen that 
the critical flow velocity value increases. It means that considering the van der Waals force 
makes the system more stable. Moreover, the dimensionless natural frequencies of three modes 
decrease as the dimensionless flow velocity increases. By increasing the flow velocity, the first 
natural frequency reaches to zero at the critical flow velocity value of 2.576 and the system 
becomes unstable, known as the first divergence instability. Next, by increasing the flow velocity 
to 4.813, the system becomes stable again. At this point, the frequencies of the first and second 
modes are coupled which is called the flutter instability. The same phenomenon is occurred at 
the critical flow velocity equal to 7.219 in which the third divergence and second flutter 
instabilities occur. 

 

 
Fig 6. Dimensionless flow velocity dependence of the lowest three modes of a TWCNT 

7. Conclusions 

The free vibration and instabilities of TWCNT conveying fluid flow were investigated 
considering the small-size effects of both fluid flow and the structure by using strain-inertia 
gradient theory. To study the vibration response, the Euler- Bernoulli beam model is used and to 
calculate the governing equation of fluid-structure interaction, the Galerkin weighted residual 
method is employed. The variations of the dimensionless critical flow velocities and 
dimensionless frequencies for different aspect ratios and characteristic lengths in the mentioned 
theory were examined. It is shown that the flow inside CNTs decreases the system natural 
frequencies. It means that the fluid flow can destabilize the fluid-structure system. Also it is 
shown that by increasing the Knudsen number of the passing nano flow, instability occurs at a 
lower flow velocity value. The results indicate that the critical flow velocity increases as the 
thickness or outer radius of CNT decreases and it decreases as the CNT length increases. 
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