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This paper presents the Fourier and wavelet characterization of vibration 
problem. To determine the natural frequencies, modal damping and mass 
participation factors of bars, a rod element is established by means of 
isogeometric formulation. The non-uniform rational Bezier splines 
(NURBS) is presented to characterize the geometry and the deformation 
field in isogeometric analysis (IGA). Non-proportional damping has been 
used to measure the real-state energy dissipation in vibration. Therefore, 
the stiffness, damping and mass matrices are derived by the NURBS basis 
functions. The efficiency and accuracy of the present isogeometric analysis 
is demonstrated by using classical finite element method (FEM) models 
and closed-form analytical solutions. The frequency content, modal 
excitation energy and damping are measured as basis values. Results show 
that the present isogeometric formulation can determine the modal 
frequencies and inherent damping in an accurate way. Damping as an 
inherent characteristics of viscoelastic materials is treated in a realistic way 
in IGA method using non-proportional form. Based on results, k-refinement 
technique has enhanced the accuracy convergence with respect to other 
refinement methods. In addition, the half-power bandwidth method gives 
modal damping for the IGA solution with appropriate accuracy with respect 
to FEM. Accuracy difference between quadratic and cubic NURBS is 
significant in IGA h-refinement. 
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1. Introduction 
Hughes et al.[1] primarily have developed the isogeometric analysis (IGA) technique for 
automotive engineering and science applications. Since many researchers are working on new 
simulation and analytical methods, it is noteworthy to determine the further aspects and 
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feasibilities of IGA. In IGA method, geometry and deformation field are expressed using Bezier 
spline (B-spline) functions developed by De Boor [2]. It is notable that B-spline is primarily used 
for exact expressing of geometry in computer aided design (CAD) tools. The differentiation and 
continuity limitations existing in finite element method (FEM) shape functions are removed in 
IGA method. Elements have selectable B-spline order with arbitrary control points. Therefore, 
accuracy and continuity of B-spline functions can be calibrated without changing the geometry 
of structure. We can refine the meshing using h-, p-, and k-refinement techniques in the 
isogeometric formulation which is discussed in detail by Cottrell et al.[3]. 

There exist several research works on the applications and formulation of IGA method in 
engineering problems. Buffa et al.[4] presented studies on the discretization of electromagnetic 
governing equations using isogeometric field expression, which the results showed the higher 
accuracy of IGA method than FEM in field problems. Aigner et al.[5] presented swept volume 
techniques and the studies of corresponding parameterizations. Hughes et al.[6] presented studies 
of specific integration rules in IGA method. Knot vector refinement methods used for exact 
geometry definition are discussed extensively in Bazilevs et al.[7]. In addition, Bazilevs et al. [8] 
have conducted detailed work on the isogeometric formulation of fluid-structure interaction 
(FSI). A novel refinement technique called T-spline refinement is discussed in Dörfel et al.[9] 
studies. Recent studies as Lipton et al.[10] are focused on the capability of IGA method in 
solution of static problems with severe meshing distortions. The numerical experts are usually 
not familiar with the well-designed and potent procedures of isogeometric technique. Instead, 
there is little data of the modeling needs in the computational geometry. 
The approach developed by Hughes et al.[6] is established on NURBS chiefly. They have 
proposed isogeometric curves to match the exact CAD geometry and then have extended them to 
constitutive equations using NURBS elements. Subsequent mesh refinements in IGA do not 
require any further link to the geometry and it can enable prevalent adoption of the method in 
simulation. The h-, p-, and k-refinement techniques increase the efficiency and robustness of 
IGA over regular FEM codes. All consequent meshes keep the exact geometry of problem. There 
is two-stage mapping of PDE integration in IGA, which are Gaussian-to-parametric patches, and 
parametric patches-to-physical mesh mappings. Therefore, various mesh refinement techniques 
exist for IGA. Recently, Nguyen et al.[11] proposed a very good review of the state of the art of 
IGA. 
Hughes et al.[12] studied duality and unified analysis of discrete approximations in structural 
dynamics and vibration. Wang et al.[13] proposed novel higher order mass matrices for 
isogeometric structural vibration analysis. Recently, Thai et al. [14] studied the static, free 
vibration, and buckling of laminated composite plates using isogeometric approach. Weeger et 
al. [15] conducted studies on nonlinear vibration of Euler–Bernoulli beams within isogeometric 
framework. Shojaee et al. [16] have been worked on the free vibration analysis of thin plates 
using NURBS-based isogeometric plate element formulation. Moreover, functionally graded 
plates are analyzed using higher-order shear deformation theory beside isogeometric geometric 
description by Tran et al. [17]. Further, Thai el al. [18] developed a layer-wise deformation 
theory combined with isogeometric displacement field expression analysis for laminated 
composite and sandwich plates. Phung-Van et al. [19] developed an isogeometric framework for 
analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order 
shear deformation theory. Tornabene et al.[20] developed a new doubly-curved shell element for 
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the free vibration application of arbitrarily shaped laminated structures using NURBS-based 
formulation. NURBS-based isogeometric analysis of buckling and free vibration problems for 
laminated composites plates with complicated cutouts is conducted by Yu et al.[21] using a new 
simple FSDT theory. Fantuzzi et al.[22] developed a strong formulation for isogeometric 
formulation of thin membranes with general shapes. Yin et al.[23] developed an extended 
NURBS-based formulation for buckling and vibration analysis of imperfect graded plates with 
internal defects. Dedè, et al. [24] analyzed the isogeometric numerical dispersion of two-
dimensional elastic wave propagation in continuum. Wang et al.[13] developed novel higher 
order mass matrices for isogeometric structural vibration analysis. 

This study is focused on the characteristics of IGA method in vibration problems. Since dynamic 
response aspects of structures are interest target in mechanical and structural engineering, it is 
noteworthy to process the response signals in IGA approach. In addition, it is necessary to measure 
the inherent damping of elastic media to detect the possible difference between FEM and IGA 
methods. However, primarily, the application of isogeometric formulation in vibration problem are 
presented here, which has frequent use in simulation of dynamic systems. Application of current 
study can be stated as measurements of numerical isogeometric response in vibration problems. In 
addition, modal and time-history characteristics of a vibration problem is extended in the 
framework on isogeometric analysis. IGA Results can be extended into complex cases with lower 
computational cost than classical FEM. This paper provides a numerical code for the expression 
and numerical formulation of PDEs in one-dimensional dynamics. In current research framework, 
the isogeometric approach to evaluate the forced vibration and response measures of elastic and 
non-prismatic rods is also extended. The IGA formulation of one-dimensional viscoelastic motion 
is developed and the simulation procedure is implemented in current study. In advance, we test the 
efficiency of IGA using Fourier and wavelet spectra. The convergence rate of dynamic 
characteristics is verified by using h-, p- and k-refinement strategies versus FEM and exact 
solution. In conclusion, the IGA vibration solutions are provided as prospect reference solution. 

2. Isogeometric analysis using NURBS 

2.1. Knot vector and B-Spline Basis-Function 

NURBS are non-uniform rational expression of B-splines and can capture the irregularities in 
mesh and geometry efficiently. Classic elements in FEM are replaced by “patches” in IGA 
method, which are in parametric space. Patches define the basis of physical elements in IGA. 
However, the geometry and material are uniform in parametric space, dissimilar to FEM. If we 
want to generate n number of B-spline basis functions with p order (degree), one needs to 
generate a knot vector. A one-dimensional knot vector is the set of coordinates in the parametric 
space with Ξ = ൛ξଵ , ξଶ, ⋯ , ξ୬ା୮ାଵൟ expression[1]. The ξ୧ term is the coordinate of i୲୦  knot, which 
has a real value. Nodes are interpolatory at the ends of element intervals. However, the basis-
functions generated by the knots are only interpolatory at the ends of the parametric space 
interval, ൛ξଵ , ξ୬ା୮ାଵൟ, if the knot vector is open. A knot vector is open if the first and last knots 
appear p + 1 times. Therefore, several knots can be placed at the same coordinate in the 
parametric space, dissimilar to the nodes in FEM. The basis-functions generated by the open 
knot vectors are not generally interpolatory at interior knots. Given a uniform open knot vector, 
B-spline basis functions are recursively explained starting with p = 0 as Eq. (1)[2]. 
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௜ܰ.଴(ߦ) = ቄ1 if ߦ௜ ≤ ߦ < ௜ାଵߦ

0 otherwise  (1) 

For p ≥ 1, the B-splines are defined as Eq. (2) [2]. 

 
௜ܰ.௣(ߦ) =

ߦ − ௜ߦ

௜ା௣ߦ − ௜ߦ
௜ܰ.௣ିଵ(ߦ) +

௜ା௣ାଵߦ − ߦ
௜ା௣ାଵߦ − ௜ାଵߦ

௜ܰାଵ.௣ିଵ(ߦ) (2) 

The derivatives of functions with respect to ξ can be calculated using standard techniques. The 
main difference between FEM shape functions and B-spline basis functions is described as Eq. 
(3) [2]. 

 
ߦ∀ ∈ Ξ → ൞

෍ ௜ܰ.௣(ߦ)
௡

௜ୀଵ

= 1

௜ܰ.௣(ߦ) ≥ 0
 (3) 

While the summation of FEM shape functions is unit only in nodes, B-splines have the unity 
summation over every coordinate in the parametric space patch. In addition, each basis function 
is not negative unlike the FEM interpolators. Therefore, the terms of constitutive matrixes 
(stiffness, mass, and damping) are not calculated as negative. This shows the superior aspect of 
IGA method in computational mechanics which is not treated as well in the FEM. The NURBS 
curves and the related first-order derivatives for the arbitrary ߌ open knot vector with ݌ = 2 are 
demonstrated in Figure 1. The length of knot vector is ݊ + ݌ + 1, which n is the basis-function 
numbers. 

  
NURBS curves Derivatives of NURBS 

Fig 1: NURBS and derivatives for Ξ = {0,0,0, 1 5⁄ , 2 5⁄ , 3 5⁄ , 3 5⁄ , 4 5⁄ , 1,1,1} open, non-uniform knot vector 

One may express the geometry of physical domains using the linear combination of NURBS 
basis-functions. Each basis-function is multiplied by control point coordinate to generate the 
geometry. Control points in IGA have the analogous sense as the nodes in FEM. It should be 
noted that geometry curve has the same continuity of B-spline basis-functions. The isogeometric 
geometry is expressed as Eq. (4) for n number of control points[2] . 

 
X(ξ) = ෍ N୧.୮(ξ)X୧

୬

୧ୀଵ

 (4) 

The isogeometric geometry is C୮ିଵ continuous in non-repeated knots and C଴ continuous in 
repeated knots, which is also shown in Figure 1. We now explain the refinement methods, which 
are used to measure the accuracy and validity of IGA meshing. The first technique is knot 
insertion, called as h-refinement. Such as, we can refine the knot vector Ξଵ = {0,0,0,1,1,1} with 
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n = 3 to Ξଶ = {0,0,0, 1 2⁄ , 1,1,1} with ݊ = 4 without change in curve order. Second approach is 
the order raise of NURBS, called as p-refinement.  It is the case that we change the knot vector 
Ξଵ = {0,0,0,1,1,1} with ݌ = 2 to Ξଶ = {0,0,0,0,1,1,1,1} with ݌ = 3. We should note that the 
multiplicity of knots and the numbers of control points are increased. Although the location of 
control points is changed in p-refinement, the order-elevated geometry is identical to the 
preliminary geometry. The third technique is the order elevation followed by the knot insertion, 
called as k-refinement approach. For example, we have k-refined if we change the Ξଵ =
{0,0,0,1,1,1} knot vector to the Ξଶ = {0,0,0,0, 1 2⁄ , 1,1,1,1} ordered and elevated knot vector. 
So, growth in the number of control points is limited in this case. In addition, the continuity of 
derivatives of NURBS is preserved in knot insertion stage. Figure 2 shows all the refinement 
methods. 

 
ଵߌ = {0,0,0,1,1,1} 

↙ ↓ ↘ 

 
ଶߌ = {0,0,0, 1 2⁄ , ଶߌ {1,1,1 = ଶߌ {0,0,0,0,1,1,1,1} = {0,0,0,0, 1 2⁄ , 1,1,1,1} 

h-refinement p-refinement k-refinement 
Fig 2: Refining techniques in isogeometric formulation 

The advantages of each technique will be discussed in analysis section of current study in the 
response measurements of simulated system. One has to go through each method and present the 
sequential results if they are used in isogeometric analysis of vibration problems. Now one needs 
to define the NURBS and establish the governing equations in isogeometric framework. For this 
purpose, this paper primarily present the rational or weighted form of basis-functions and the 
NURBS as Eq. (5) and (6), respectively[2] . 

 R୧
୮(ξ) =

N୧.୮(ξ)w୧

∑ N୨.୮(ξ)w୨
୬
୨ୀଵ

 (5) 

 
C(ξ) = ෍ R୧

୮(ξ)C୧

୬

୧ୀଵ

 (6) 
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In above relation, ܥ௜  can be any arbitrary quantity in ݅௧௛ control point (coordinate, displacement, 
velocity, acceleration, etc.) which are interpolated using NURBS (ܴ௜

௣). It is clear that the 
continuity of NURBS basis-functions are analogous to the NURBSs. Now we can use the 
NURBS as the basis for wave-propagation simulation. However, there is a need to define the 
element in isogeometric concept. In one-dimension problems, Hughes et al. [1] defined the IGA 
element as the distance between two individual knots. Consequently, the number of elements is 
the number of non-zero knot spans in the knot vector Ξ. In IGA, meshing is the patch of knot 
vector and the control points related with the NURBS outline the geometry. Dissimilar to the 
FEM, elements have overlaps in IGA and the governing equations are formulated in the whole 
domain of problem. Therefore, the assembled form of constitutive matrixes in IGA is completely 
different from those obtained in the FEM. Since the continuity of NURBS are easy to deal with 
in the isogeometric formulation, there is no severe jumps of field values and it is one of the 
several advantages of the IGA method. 

2.2 Isogeometric Kinematics and Equilibrium 
In this section, we establish the governing equations and the discretization using isogeometric 
element (IGE) to introduce the geometry and displacement field in terms of the control point 
value x୧ as Eq. (7). 

 
x(ξ) = ෍ R୧

୮(ξ)x୧

୬

୧ୀଵ

 (7) 

We should highlight that in the motion, control points and isogeometric elements move with the 
material particles with which they were initially associated (Lagrange formulation). Therefore, 
we describe the motion in terms of the instantaneous position of control points. Likewise, 
restricting the motion caused by an arbitrary growth ݑ to be consistent with above relation 
suggests that the displacement will be as Eq. (8) [3]: 

 
u(x) = ෍ R୧

୮(x)u୧

୬

୧ୀଵ

 (8) 

We can define the linear strain as Eq. (9)[3]: 
 

ϵ =
1
2

෍ ൬u୧ ⊗
∂

∂x
R୧

୮ +
∂

∂x
R୧

୮ ⊗ u୧൰
୬

୧ୀଵ

 (9) 

Ahead, we obtain NURBS mesh gradient using the derivatives of the patch domain as Eq. 
(10)[3]: 

 ∂
∂x R୧

୮(x) = ൬
∂x
∂ξ

൰
ିଵ ∂

∂ξ R୧
୮(ξ) (10) 

 
 
In numerical analysis, we need to discretize the spatial equilibrium equations in the matrix-vector 
representation. This needs a retreat of constitutive law for viscose-elastic material as Eq. (11)[6]: 

 σ = Eϵ + μϵ̇ (11) 
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where E is the elastic modulus, ϵ is axial strain, μ is the inherent viscosity and ϵ̇ is the strain rate.  
The Eq. 11 is Kelvin-Voigt viscoelastic model, which is the typical model used for classic 
purposes and not a general constitutive law for all kinds of viscoelastic materials. This model is 
used to demonstrate the effect of inherent damping in modal and transient response beside 
energy dissipation rate of the system when it is modeled in isogeometric framework. Strain 
consistency can be expressed in terms of the typical B matrix and the control point displacements 
as Eq. (12) [3]: 

 
ϵ = ෍ B୧(x)u୧

୬

୧ୀଵ

→ B୧(x) =
∂

∂x
R୧

୮(x) (12) 

Now we combine constitutive and strain consistency to calculate the internal stress. In advance, 
we can discretize the total virtual work equation [3] to be rewritten as Eq. (13) if the virtual 
displacement of control point a with i knot index. 

 δW(δuୟ) = δWୡ(δuୟ) + δW୧(δuୟ) − δW୤(δuୟ)   (13) 

Note that the formulated internal virtual work includes terms as δWୡ and δW୧ which denote 
constitutive and inertial terms. External virtual work includes the δW୤ term that expresses the 
body force effect. The constitutive component of the internal virtual work can now be rewritten 
in matrix form as Eq. (14) which relating the displacements of control points ܽ and ܾ [6]. 

 
δWୡ = δuୟ

୘A න {Bୟ
୘ E Bୠuୠ + Rୟ

୘ μ Rୠu̇ୠ}dx
୐

= δuୟ
୘Kୟୠuୠ + δuୟ

୘Cୟୠu̇ୠ (14) 

The ܭ௔௕ and ܥ௔௕ terms denotes the stiffness and damping matrixes of rod element, respectively 
formulated in IGA. In addition, A is the cross section and L is the length of IGE. Inertial part of 
the external virtual work is expressed in matrix form as relating the virtual displacement of 
control point a and acceleration of control point  ܾ in order as Eq. (15) [6]. 

 
δW୧ = δuୟ

୘A න {Rୟ
୘ ρ Rୠüୠ}dx

୐
= δuୟ

୘Mୟୠüୠ (15) 

The ρ term is unit density per area of material. The body force, ݂, is independent of the motion 
and consequently is constant regarding deformation of media. Thus, the virtual external work 
due to applied body force per isogeometric element can be expressed in vector form as Eq. (16) 
[6]: 

 
δW୤ = δuୟ

୘A න {Rୟ
୘ f}dx

୐
= δuୟ

୘ fୟ (16) 

Here, the fୟ term is the external equivalent forces in control point ܽ. Regarding acquired terms in 
matrix set of equation, governing equilibrium is independent of the arbitrary displacement 
assumed for a control point and therefore will have the form as expressed in Eq. (17): 

 Kୟୠuୠ + Cୟୠu̇ୠ + Mୟୠüୠ =  fୟ (17) 
  
Regardless of which configuration is used for parametric patch, the resulting displacement, 
velocity and acceleration vectors will be identical in isogeometric analysis. It is, however, 
usually easy to initiate the discretized quantities in the spatial knot arrangement. Rewriting the 
relations of all control point leads into Eq. (18) matrix form. 
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 Ku + Cu̇ + Mü = f (18) 

For free vibration analysis, governing equation will have Eigenvalue form as Eq. (19) where ω୬ 
is the vector containing natural angular frequencies of system [6]. 

 MିଵK − I ∙ ω୬
ଶ = 0 (19) 

In order to solve the set of equations, we need a numerical integration algorithm used in 
elastodynamics. We choose the explicit time integration using central difference method which is 
used mainly for vibration problems. It is called explicit method because the equilibrium equation 
is used at time t to obtain the solution for time t + ∆t. Using central difference approximation of 
acceleration and velocity vectors would modify above equilibrium at time t as Eq. (20)[6] : 

 Ku୲ + C{u୲ା∆୲ − u୲ି∆୲}
1

2∆t + M{u୲ା∆୲ − 2u୲ + u୲ି∆୲}
1

∆tଶ = f୲ (20) 

By this substitution, the displacement vector in t + ∆t increment is an explicit function of two 
previous t and t − ∆t increments status. Rearranging Eq. (20) will present statement as Eq. (21) 
[6]: 

 
u୲ା∆୲ = ൬M + C

∆t
2 ൰

ିଵ

൜(f୲ − Ku୲)∆tଶ + 2Mu୲ − ൬M − C
∆t
2 ൰ u୲ି∆୲ൠ (21) 

We need a starting displacement vector, uଵ, is acquired as Eq. (22) or initialization of solution 
algorithm [6]. 

 
uଵ = Mିଵ ቊ(f଴ − Ku଴)

∆tଶ

2 + ൬M − C
∆t
2 ൰ u̇଴∆tቋ + u଴ (22) 

Limited available information about inherent damping of structures subjected to dynamic loads 
made to assume a proportional Rayleigh damping in terms of mass and stiffness matrixes. 
However, viscosity is the intrinsic property of material and therefore we need to express it in the 
non-proportional form. We assume various values for inherent viscosity and measure the modal 
damping ratio based on the Fourier spectrum characteristic in advance.  

3.  Numerical simulation 
In this section, we go through numerical models to check the validity and accuracy of IGA 
method in modeling of the vibration. We check the sensitivity of dynamic response 
characteristics to the element size and the refinement technique used. Primarily, we validate the 
vibration frequencies of response for various refinements and then we assess the characteristics 
of dynamic response using Fourier and wavelet spectra. In advance, we will measure the 
excitation and dissipated energy in time domain. We select the cantilever and clamped rod 
members with impulsive force excitation. In addition, the numerical code is developed in 
 .environment and the parallel processing algorithm is used for analysis threading[25] ®ܤܣܮܶܣܯ

3.1. Modeling and oscillation analysis 
This paper assume a clamped rod with elastic modulus (ܧ) of 200 ܽܲܩ, section area (ܣ) of 
78.54 ݉݉ଶ, length (ܮ) of 3000 mm and mass density (ߩ) of 7.85 × 10ିଽ ݊݋ݐ  ݉݉ଷ⁄ . The 
geometry and isogeometric meshing of the member is show in Figure 3. The size of physical 
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elements is uniform along the member to regularize the integration procedure. We primarily get 
the frequencies and check their accuracy.   

 
Fig3: Geometry and isogeometric meshing of member regarding quadratic and cubic NURBS elements 

The authors use all the refining techniques in isogeometric formulation to investigate the 
efficiency of each method used. The analytical values of vibration frequencies of cantilever and 
clamped rods are as Eq. (23) and (24), respectively[2] .  
 ߱௡ =

(2݊ − 1)
2

ߨ
ܮ  ௖ݒ

(23) 

 ߱௡ = ݊
ߨ
ܮ  ௖ (24)ݒ

 
 

  
Cantilever member Clamped member 

 
Fig 4: Relative estimation error for quadratic NURBS in h-refining 

The ݒ௖ term is the longitudinal stress wave velocity and equals to ඥܧ ⁄ߩ . We start with the h-
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quadratic and cubic NURBS basis-function for definition of the geometry and displacement 
field. The initial knot vector used for mesh generation (ℎ = 1) is ߌଵ = {0,0,0,1,1,1} which has 
only one quadratic isogeometric element. We generate the mesh by means of bisecting 
isogeometric element as the NURBS order in constant. Therefore, the next mesh (ℎ = 2) has 
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ଶߌ = {0,0,0, 1 2⁄ , 1,1,1} knot vector and as forth. Figure 4 and Figure 5 show the relative 
estimation tolerance of IGA method for the h-refinement technique for quadratic and cubic 
NURBS, respectively. Results shows the increasing accuracy of IGA method of quadratic 
functions for fifth element bisection (ℎ = 32) with 0.1% estimation error. In the case of cubic 
NURBS basis-functions, we get the required accuracy with lower number of IGEs. In addition, 
cubic NURBS has high accuracy for high vibration modes. 
 

  
Cantilever member Clamped member 

Fig 5: Relative estimation error for cubic NURBS in h-refining 

In advance, we will measure the enhanced k-refinement technique on the convergence rate of 
frequency values to the exact ones in IGA method. Similar to the previous case, we start with 
single a quadratic (݇ = 1) NURBS element with ߌଵ = {0,0,0,1,1,1} knot vector. However, 
element is refined in NURBS order and knot insertion. Therefore, the next refining has ߌଶ =
{0,0,0,0,0.5,1,1,1,1} knot vector (݇ = 2) and so forth. It should be noted that the number of 
control points is ݊௘௟ + in a uniform IGA mesh, where ݊௘௟ ݌  is the number of elements. Below is 
the obtained result using k-refinement technique to compare with the h-refinement method.  
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Fig 6: Relative estimation error for k-refining technique 
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Figure 6 shows the results obtained for vibration frequency calculation using k-refinement in 
IGA. As shown in figure, both clamped and cantilever member cases have the same sensitivity to 
the mesh refinement in k-refinement for high degree of freedom, dislike the h-refinement case. 
However, both h- and k-refinement methods obey the analogous variation with respect to the 
vibration mode. Comparison of abovementioned refining methods shows that k-refinement is 
suitable for the rest of dynamic analysis procedure, regardless of the study case. In addition, we 
have lower degrees of freedom in k-refinement technique than h-refinement, which speeds up the 
calculation process in advance. The authors select the ultimate mesh reached in vibration 
analysis (݇ = 7) with 1 × 10ିହ relative estimation error to acquire the transient analysis results. 

3.2. Transient analysis 
Now we investigate the characteristics of the dynamic response of member modeled using IGA 
approach. For this purpose, we use the force excitation with uniform distribution along the 
member length. The force magnitude (ܨ଴) is 10 ܰ ݉݉⁄  and has the Dirac-delta ((ݐ)ߜ) impulsive 
time history. Such an excitation is appropriate for the vibration problems since we need to 
suppress the effect of the loading period. We have extracted the time-history of the displacement 
record at the free-end of the cantilever member and in the mid-span location of the clamped 
member.  In order to simplify the results and further discussion, we have plotted the response and 
the frequency content of the related record using Fast Fourier Transform (FFT) spectrum in 
Figure 7. Fast Fourier transform (FFT) measures the natural oscillation frequencies of structures 
and is a frequency-based transform widely used in analysis of linear systems. It decomposes a 
signal into sine waves of different frequencies, which sum to the original waveform, 
distinguishing different frequency sine waves and their respective amplitudes. FFT is of great 
importance to signal processing. It used to extract the frequency content of structures and to 
detect damage in beams. The continuous FFT is as Eq. (25): 
 

(߱)ܨ = න ݐ݀(ݐ߱݅−)݌ݔ݁(ݐ)݂
ାஶ

ିஶ

 (25) 

 
Functions as ݂(ݐ) and ܨ(߱) denote given signal in time domain and Fourier transform in 
frequency domain. In structural health monitoring (SHM) theories, which exists in Farrar and 
Worden [26], Chang and Liu [27] and Chen et al. [28] works, the response due to excitation used 
for response detection is linear although the properties of geometry change. However, here 
features of system during transient and steady states responses are decomposed to characterize 
response, which is currently active. In other words, although FFT tentatively is used for whole 
time-history assessment, evaluation of frequencies and the affectivity of damping be measured. 
Still the Fourier transform cannot determine the information variations along time domain. For 
instance, if there is a local oscillation representing a particular phenomenon occurring within 
response time domain, its location is not recognized. The latter case is the non-stationary signal, 
which the frequencies alter over time. Primarily we assumed an ideal system without energy 
dissipation. Figure 7 shows both the record and the amplitude spectrum. 
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Excited Displacement History                                                                                                                             FFT Analysis 

Fig7: Un-damped oscillation of cantilever rod and the amplitude spectrum 

  
Excited Displacement History FFT Analysis 

 
Fig 8: Un-damped oscillation of clamped rod and the amplitude spectrum 

  
 

Fig 9: Damped oscillation of cantilever rod and the amplitude spectrum 
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If one divides the amplitudes of each vibration frequencies to the static value, we acquire the 
modal participation factors as 82.2%, 8.9%, 2.7%, 1.1%, and 0.4% for the first, five modes. In 
advance, we select the clamped beam with the same impulsive force excitation. It should be 
noted that due to symmetry of the boundary conditions with respect to mid-span, the odd-number 
modes are excited. The modal participation factors are estimated as 85.3%, 8.0%, 2.6%, 1.1%, 
and 0.4%, for the first five modes using the FFT data as shown in Figure 8. The reduction in the 
peak FFT amplitude and increase in the corresponding frequency is notable. We acquire the 
analogous values using the closed form solution in analytical methods. 
 

  
Excited Displacement History FFT Analysis 

Fig 10: Damped oscillation of clamped rod and the amplitude spectrum 

Now, we go through the response characteristics of the damped case for both members. We 
assumed that the initial inherent viscosity of system (ߤ) is 4.15 × 10ି଺  ܰ ∙ ݏ ݉݉ସ⁄  [29]. Here, 
we do not use the proportional damping assumption since the modes other than the specified 
modes are over-damped or under-damped. The exact case is to determine the damping 
percentage of each mode using the FFT spectrum and frequency content. It is notable that the 
half-power bandwidth of the ݅௧௛ vibration mode is 2ߦ௜ at the 1 √2⁄  fraction of the resonant 
amplitude in spectrum. Therefore, we primarily present the oscillation of damped system and 
then extend the FFT analysis to measure the damping percentage of modes. It is useful to 
determine if each vibration mode has the same percentage or not and if so what is the pattern. 
Figure 9 shows the displacement time-history and the FFT spectrum of the cantilever member. In 
advance, Figure 10 shows that analogous results for clamped member. The logarithmic 
decrement of motion is as Eq. (26) for the determination of damping for the first mode. 
ߜ  = ln(ݑ௜ ⁄௜ାଵݑ ) = ߙߨ2 ඥ1 − ⁄ଶߙ  (26) 
Here, ߙ is the damping percentage of first mode. If we replace the displacement of two 
successive waves in above equation, we will have the ߙ = 10% for the cantilever problem. In 
addition, we will have ߙ = 5% for the clamped case, respectively. However, for the wave 
damping analysis of other modes, we have to use the bandwidth method. Due to non-
proportionality of the provided damping, the use of orthogonal-mode decomposition is not 
applicable.  As the peak pulses of the FFT spectra are so narrow in the free-vibration plots, we 
acquire ߙ = 0.0% for un-damped case. Table 1 and Table 2 shows the damping percentage of 
first-ten modes of clamped and cantilever members. For comparison of the results, we do the 
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same analysis using ݏݑݍܾܽܣ FEM code with a overkill meshing. We have modeled the members 
with linear two-node elements. 

Table 1: Damping percentage of vibration modes for IGA analysis 
Mode 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Clamped 5.00% 2.50% 1.67% 1.25% 1.00% 0.83% 0.71% 0.63% 0.56% 0.50% 

Cantilever 10.00% 3.33% 2.00% 1.43% 1.11% 0.91% 0.77% 0.67% 0.59% 0.53% 

 

Table 2: Damping percentage of vibration modes for FEM analysis 
Mode 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 

Clamped 5.00% 2.50% 1.67% 1.25% 1.00% 0.83% 0.71% 0.62% 0.55% 0.50% 

Cantilever 10.00% 3.33% 2.00% 1.43% 1.11% 0.91% 0.77% 0.66% 0.58% 0.52% 

 
As shows in Tables 1 and 2, there is almost no difference between regular-mesh IGA and fine-
mesh FEM results, which approves the efficiency of IGA method in damped dynamic problems. 
The FEM models have 10ଷ times more degrees of freedom than the ݇ = 7 IGA model. We get 
the equal results for the first mode as acquired previously by logarithmic decrement. For modes 
higher than the eighth mode, IGA method acquired higher damping percentage than FEM for 
high modes. The comparison of IGA and FEM results is plotted in Figure 11.  

 
Fig 11: Damping percentage versus vibration mode calculated in IGA and FEM 

We can conclude that the IGA method is quite accurate in modeling the vibration behavior of 
non-proportionally damped system with even lower degrees of freedom in discretized models. In 
addition, the FEM technique fails to determine the non-proportional damping of higher modes in 
comparison with IGA method. The IGA solution with k-refinement technique and the overkill 
FEM solution are not sensitive to the boundary conditions of problem. The FFT decomposition 
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combined with the IGA formulation are appropriate methods to determine the response 
characteristics of mechanical systems with inherent damping. For completion of the results, we 
present the energy time-history acquired by the IGA method. Primary validation is the 
conservative law of total energy. We can also determine the time-period required to dissipate the 
imposed energy. Figure 12 shows the time history of the system energies versus time. 
 

  
Cantilever Clamped 

Fig 12: Integrated Energies versus time for IGA solution 

We note that either clamped or cantilever member dissipate the impose energy in a same time 
which only depend on the inherent viscosity of material. Systems with higher vibration 
frequencies only required more oscillation to absorb the energy. For this special case, time to 
dissipate the total energy is 10 ݉ܿ݁ݏ, which can also be calculated by the theoretical method. In 
addition, we will go through the wavelet decomposition to investigate the characteristics of 
vibration. 

3.3.Continuous wavelet transformation 
Kitada[30] expressed that the wavelet transform (WT) breaks a signal into shifted and scaled 
versions of the selected wavelet, called as basis function which are compact in both time and 
frequency domains. Basis functions should integrate to zero and be square integrable with finite 
energy level. Unlike the FFT method, the data on both time and frequency domain are 
maintained, depending on the scale-time range used in wavelet transformation. Here the time 
variable differentiates the simultaneous damages that happen at different locations for impact 
load. The continuous wavelet transformation (CWT) is as Eq. (27): 
 

,ܽ)ܥ ܾ) = න
1

√ܽ
߮(ݐ)݂ ൬

ݐ − ܾ
ܽ

൰ ݐ݀
ାஶ

ିஶ

 (27) 

Here, ܽ and ܾ parameters denote the scale and position of base function respectively over time. 
The CWT method captures the high frequency and high period oscillations for ܽ < 1 and ܽ > 1  
scales in that order. Coefficients ܹ(ܽ, ܾ) represent the similarity correlation of the scaled 
wavelet to specific section of response signal. In this study, the Morlet wavelet is the mother 
wavelet with Eq. (28) definition, which is efficient in damage crack assessment which is 
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presented in Liew and Wang[13] works. The selected base function with regular and square 
integrals are plotted in Fig 13 where the major part of excitation energy (square integral) is 
delimited to |ݐ| ≤ 3.0 sec time domain. 

 
(ݐ)߮ = ݌ݔ݁ ቆ−

ଶݐ

2
ቇ cos (5ݐ) (28) 

   

න (ݐ)߮ ݐ݀(ݐ)߮
௧

 න ݐଶ݀|(ݐ)߮|
௧

 

Fig 13: Morlet wavelet time function supplied with regular and square integrals 

The output of CWT analysis is a plot on which the ݔ −axis represents position along the time 
domain (ܾ), the ݕ −axis represents scale (ܽ), and the color at each ݔ −  point represents the ݕ
magnitude of the wavelet coefficients, ܹ(ܽ, ܾ). The CWT coefficient plots are accurately the 
time-scale view of the response signal. It is a different view of extracted data and is relevant to 
the time-frequency FFT content. In the damage of beam impact, the natural frequency decreases 
as shear and flexural cracks propagate (Liew et. al.[31]). The decrease of frequency causes an 
increase of the wavelet scale and corresponding coefficient in the CWT. Therefore, the CWT 
analysis detects the damage-induced property alterations specifically. We present the wavelet 
analysis results for the un-damped and damped IGA solution in Figure 14 and Figure 15, 
respectively. 
 

 
Fig 14: Coefficients of CWT versus scales of un-damped IGA solution (time in micro-sec) 
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Fig 15: Coefficients of CWT versus scales of damped IGA solution (time in micro-sec) 

For the un-damped case, we detect the participation the decreasing participation of high modes 
as the wavelet scale decreases.  The coefficient distribution along time is constant for a definite 
scale which shows the stable oscillation of each period. For the damped case, results show that 
high-frequency modes have lower damping ratio than high-period modes. In addition, the 
participation ratio of each mode is decreasing over time. In this way, the CWT decomposition of 
IGA solutions has the complete correlation with the FFT analysis. We can measure the response 
of members with non-uniformly distributed material properties. Here, we assume the rod with 
(ݔ)ܧ = ܧ sin(2ݔߨ ⁄ܮ ) distribution for elastic modulus. In other words, we have two non-
prismatic rod connected to each other in the mid-span location. We assume the clamped 
boundary condition for the problem. For a general analysis case we present both the un-damped 
and damped oscillation case with the k-refinement achieved in the previous sections. The loading 
history and the viscosity of the material are analogous to the previous cases. Figure 16 shows the 
time-history of the mid-span displacement and the FFT spectrum content. 
 

  
Time-History FFT Spectrum 

Fig 16: Oscillation of clamped non-prismatic rod and the amplitude spectrum 
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As shown in the above figure, several modes govern the vibration of both cases as rod rods are 
vibrating interactively. Using the half-power bandwidth method, we acquire 9.7%, 5.9%, 2.5%, 
2.1% and 1.5% damping percentage for the first-five vibration modes. We detect that for non-
prismatic member case, the damping ratio does not have sharp descending pattern for high 
modes. In other words, high-frequency modes have almost the same damping ratios. Although 
high-frequency modes are not present in oscillation of the un-damped case, there exist in the 
damped member with very small amplitudes as shown in the FFT spectrum. 
 

  
Un-damped Damped 

Fig 17: Coefficients of CWT for non-prismatic member in IGA solution (time in micro-sec) 

The CWT spectrum of response is shown in Fig 17. We detect mid-range and high-range 
frequencies in un-damped response. Dislike the prismatic case, the first mode only governs the 
start of vibration and then high-frequency vibration is activated. For the damped case, the CWT 
spectrum shows non-uniform dissipation of energy between modes. Low- and high-frequencies 
have lower kinetic energies than the mid-range frequency mode.  Since the IGA method captures 
the vibration modes exactly, the dynamic response evaluation within this method provides 
precious database. 

4. Conclusion 
Current study deals with the development of the isogeometric formulation for the one-dimension 
vibration problem. We measure the accuracy of the isogeometric analysis method using both 
closed-form and the overkill finite element method solutions. The h- and k-refinement 
techniques are used for mesh refining. Results consist of vibration frequency, time-history 
records, fast Fourier transform and wavelet spectra. We use the mentioned decomposition 
method to determine the characteristics of the assessed dynamic response. We make following 
outcomes based on the results: 

 The k-refinement technique has enhanced the accuracy convergence with respect to the h-
refinement method both in modal and time-history procedures. 

 The half-power bandwidth method gives the effective damping percentage of the 
vibration modes for the IGA solution with appropriate accuracy with respect to FEM 
method. 
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 Meshing convergence ratio is fast in the IGA method with respect to classical FEM 
solution. The accuracy difference between quadratic and cubic NURBS is significant in 
h-refinement technique of IGA solution. 

 The FEM method underestimates the damping ratios of the high-frequency modes in 
compare with the IGA method. 

 CWT used for decomposition of results show that the participation of high-frequency 
mode decrease with respect to the high-period modes along time. 
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