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Periodic piezoelectric beams have been used for broadband vibration 
energy harvesting in recent years. In this paper, a periodic folded 
piezoelectric beam (PFPB) is introduced. The PFPB has special 
features that distinguish it from other periodic piezoelectric beams. 
The Adomian decomposition method (ADM) is used to calculate the 
first two band gaps and twelve natural frequencies of the PFPB. 
Results show that this periodic beam has wide band gaps at low 
frequency ranges and the band gaps are close to each other. Results 
also show that the PFPB can efficiently generate voltage from the 
localized vibration energy over the band gaps. The natural frequencies 
of the PFPB are close to each other and most of them are out of the 
band gaps. Therefore, the PFPB can also generate the maximum 
voltage over a relatively wide frequency range out of the band gaps. 
In order to show these features better, the voltage output of the PFPB 
over a wide frequency range is calculated using the ANSYS software 
and compared with that of a conventional piezoelectric energy 
harvester. The ANSYS is also used to validate the analytical results 
and good agreement is found. 
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1. Introduction 
In recent years, piezoelectric materials have been used for vibration energy harvesting[1, 2]. The 
main challenge for piezoelectric energy harvesting is to generate the maximum power over a wide 
frequency range. Muthalif and Nordin [3] considered two different shapes for a piezoelectric 
cantilever beam: triangle and rectangle. They showed that the voltage output of the triangular-
shaped beams is larger than that of the rectangular-shaped ones. Chow et al.[4] divided a 
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piezoelectric beam with specified width into several beams with smaller width in order to increase 
the voltage output of the harvester.  

Many studies are conducted on the tuneable energy harvesters and broadband energy harvesting. 
Eichhorn et al.[5] tuned the resonance frequency of a piezoelectric cantilever beam by applying an 
axial force to the tip of the beam. Reissman et al. [6] used attractive magnetic force in order to tune 
their piezoelectric energy harvester. Shahruz [7] proposed an ensemble of cantilever beams having 
different lengths and tip masses. It was shown that close natural frequencies can be obtained by 
changing the length and tip masses. 

Periodic structures have a specific feature called band gap. Band gaps are frequency ranges where 
no wave propagation is possible, and the vibration energy is localized at some parts of the periodic 
structure. Several methods such as the finite element method (FEM) [8], the spectral element 
method (SEM) [9], the transfer matrix method [10] and differential quadrature method (DQM) 
[11, 12] have been used for vibration band gap analysis of different periodic structures. 

Band gap phenomenon has a lot of applications such as absorbing vibration, filtering the 
frequency, controlling the noise and so on[13]. Recently, periodic piezoelectric beams have been 
used for broadband vibration energy harvesting [14, 15]. The main disadvantages of these periodic 
beam models are that they have not wide band gaps at low frequency ranges and also they cannot 
efficiently generate voltage from the localized vibration energy over the band gaps. 

In this study, our main contribution is to present a periodic piezoelectric folded beam (PFPB) 
having special features compared to other periodic piezoelectric beams. The effects of geometry 
on the first two band gaps and first twelve natural frequencies of the PFPB are investigated using 
the Adomian decomposition method (ADM) to reveal the special features of its band gaps and 
natural frequencies. Calculation of strain curves of the PFPB in the band gaps shows its efficiency 
in voltage generation from the localized vibration energy over the band gaps. Furthermore, In order 
to show these features better, a conventional piezoelectric energy harvester with the same material 
and geometrical parameters as the PFPB is considered. Then, their voltage outputs over a wide 
frequency range are calculated using the ANSYS software. The ANSYS is also used to validate 
the analytical results.  

 

 
 

Fig. 1. Periodic folded piezoelectric beam. 
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Fig. 2. Unit cell. 

2. Theoretical analysis 
Figures 1 and 2 show the PFPB and its unit cell, respectively. Figure 2 shows that each cell contains 
two bimorph piezoelectric beams connected by a rigid and massless link. These beam elements 
have different widths. 

 

If the length of each beam element is greater than its height, the Euler-Bernoulli theory is 
applicable to it. The Euler-Bernoulli beam differential equation is written as[16]  
 4 2

4 4

( , t) ( , t) ( , )w x w xE I A f x t
x t


 

 
 

 (1) 

For the ith beam element, free vibration equation is written as follows 

 
   

4 ( ) ( )
( ) ( ) 2 ( ) ( ) ( ) ( )

( ) 4

( ) ( ), 0 ,
( )

1, 2,3,..., , 2

i i
i i i i i i

i

u

d W xEI A W x x L
d x

i N N N

   

  

 (2) 

The terms  ( )iA and  ( )iEI are defined as [3]: 
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,
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A h h b
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  
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  

 

    
 



    (3) 

where  , E , A , I , W ,  , h  and b  are density, Young’s modulus, cross-section area, moment 
of inertia, mode shape, natural frequency, the beam height and width, respectively. uN  is the 
number of unit cells. Furthermore, subscripts p  and np  denote the material as piezoelectric and 
non-piezoelectric.  

In the unit cell, applying the continuity conditions of deflection and slope at the interface between 
two connected beam elements, we have: 
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 (1) (1) (2)
(1) (1) (2)

(1) (2)

( ) (0)( ) (0) , dW L dWW L W
dx dx

    (4) 

The moment and shear force at free end are written as: 
 

A Bloch wave is a type of wave function for a particle in a periodically-repeating environment. 
Each periodic structure consists of an infinite repetition of the unit cells. Wave propagation in 
periodic structures can be investigated through the analysis of a unit cell and the application of 
Bloch Floquet theorem. For an infinite periodic beam, Bloch theorem can be applied as[17] : 

 

 (1) (1) (1)
(1) (1) (1)
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  (1) 3

(0)
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 (6) 

where a  is the unit cell length. xk is the wave vector in the x - direction, and j  is an imaginary 
number.  In the PFPB, the continuous conditions of deflection, slope, moment and shear force at 
the interface between three connected beam elements are, respectively, written as 
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Furthermore, at the junction of two connected beam elements, the continuous conditions are 
written as 

 2 (2) (2) 3 (2) (2)

(2) 2 (2) 3

( ) ( )0, 0
( ) ( )

d W L d W L
d x d x

   (5) 
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(8) 

The moment and shear force at free ends are written as 
 2 ( ) ( ) 3 ( ) ( )

( ) 2 ( ) 3
( ) ( )0, 0, 2,4,6,...

( ) ( )

c c c c

c c
d W L d W L c N

d x d x
    (9) 

Finally, the deflection and slope at the clamped end are written as 

 (1)
(1)

(1)

(0)(0) 0, 0dWW
dx

   (10) 

3. ADM  
The ADM is a useful and powerful method for solving linear and nonlinear differential equations. 
This method was introduced by Adomian [18]. The main advantage of the ADM is that it 
approximates a continuous solution for differential equations. Some researchers have used the 
ADM for vibration analysis of the structural and mechanical systems [19, 20]. 

3.1. Calculation of vibration band gaps 
The governing equation (2) for two beam elements of the unit cell can be written in the following 
dimensionless form 

 4 ( ) ( )
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where the dimensionless parameters are 
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(12) 

Furthermore, by using these dimensionless parameters, the boundary equations (4)(6) are, 
respectively, written as 

 (1) (1) (2)
(1) (1) (2)
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Based on the ADM, ( ) ( )( )i iv X  is expressed as follows [19]. 

 ( ) ( ) 43 1
( ) ( ) ( ) (1)

( )
0 0

(0) ( )( ) ( ) ( ) , 1,2
( ) (4 )!

r i i m rM
i i i m m

i r
r m

d v Xv X i
d X m r

 


 

 
   
   (16) 

M  is the number of the series summation limit. The unknown parameters 
( )
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(0) ( 0,1,2,3, 1,2)
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r i

i r
d v r i
d X
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equations (13)(15). As shown in Eq. (16), (1) (1)( )v X  is a linear function of 
(1)
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 . Furthermore, by Substituting Eq. (13) into Eq. (16), (2) (2)( )v X  is written 

as follows 
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Substituting (1) (1)( )v X  and (2) (2)( )v X  into boundary equations (14) and (15), the following 
assembled form is obtained 

    (1)( , ) 0K k B     (18) 

where 

 
 
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 
  
 

 (19) 

Equation (18) has a non-zero solution, if det( ) 0K  .  Finally, by solving this equation, the 
frequency   is calculated as a function of wave vector k . In other words, the band gaps of the 
PFPB are calculated.  
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3.2. Calculation of natural frequencies and mode shapes 
For free vibration analysis, the following dimensionless parameters are defined  

  
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(20) 

where tL  is the total length of the beam elements of the PFPB. By using these dimensionless 
parameters, Eqs. (2) and (7)(10) are, respectively, written as follows 
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Similarly, based on the ADM, ( ) ( )( )i iX  is expressed as follows 
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the boundary equations (22)(25). Substituting Eq. (25) into Eq. (26), (1) (1)( )X can be expressed 
as follows 
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Furthermore, by substituting Eqs. (22) and (23) into Eq.(26), ( ) ( )( ) (i 1)i iX  are expressed as 
follows 
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 (29) 

By substituting Eqs. (27), (28) and (29) into Eq. (24), we obtain 

    (1)( ) 0K B     (30) 

where 

 
 

2 ( ) 3 ( )

( ) 2 ( ) 3

(0) (0), , 1,3,5,..., 1
( ) ( )

i i

i i
d dB i N
d X d X
  

   
 

 (31) 

Finally, by solving det( ) 0K  , the natural frequencies of the PFPB are calculated. Furthermore, 
by substituting the nth natural frequency into Eq. (30), the unknown parameters 

2 ( ) 3 ( )

( ) 2 ( ) 3
(0) (0), ( 1,3,5,..., 1)

( ) ( )

i i

i i
d d i N
d X d X
 

   are calculated. Substituting these parameters into Eqs. 
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(27), (28) and (29), the nth mode shape for each beam element (
( ) ( )( ) 1,2,3,...,
i i

n X i N  )  is 
calculated.  

The voltage output of the piezoelectric layer depends on the area under the strain curve [21]. For 
the nth mode shape, the strain at the upper surface of the piezoelectric layer of the ith beam element 
is calculated using the mode shape function 

 

 
2 ( ) ( )

( )
2 ( ) 2( )

( )( ) , 1, 2,3,...,
2 ( )

i i
npi t n

n p ii

h L d XS h i N
d XL


     (32) 

4. Numerical examples  
In order to validate the proposed method and also to investigate the advantages of the PFPB, some 
numerical examples will be discussed in this section. In this study, the aluminum and PZT-4 are 
used for the non-piezoelectric and piezoelectric materials, respectively. The material properties are 
 -3 -377.56 Gpa, 2730 kg.m , 81.3 Gpa, 7500 kg.mnp np p pE E      (33) 

A PFPB with seven unit cells ( 7uN  ) and the following geometrical parameters is considered. 

 

 (1) (2) (1)0.4 , 0.2 , 10 ,  120np ph mm h mm b b mm L mm      

 

(34) 

 
Fig.  3. Effects of   on the (a) lower and upper edges of the first two gaps, (b) first twelve natural frequencies of the 

PFPB. 
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Then, the lower and upper edges of the first two band gaps and the first twelve natural frequencies 
are calculated for different values of (2) (1)L L  . Results are shown in Fig. 3 . In the ADM, 
results converge toward the exact value as the series summation limit M  is increased. The number 
of series summation is selected to be 8M   for all following examples. 

Figure 3a shows that as   increases, the first two band gaps move to low frequency ranges. 
Furthermore, for 0.59  , the first two band gaps are very close to each other and have the 
maximum width. Figure 3b shows that most of the natural frequencies are out of the band gaps. 
Therefore, as   increases, the natural frequencies decrease and in some cases become close to 
each other.  

In order to show the efficiency of the PFPB in vibration energy harvesting, as an example, the 
PFPB model with 0.95   is considered. 

Then, its first twelve natural frequencies are calculated for (2) 5b mm  and (2) 10b mm . Results 
calculated by the ADM and ANSYS software are shown in Table 1. 

Table 1. First twelve natural frequencies of the PFPB. 
Frequency 

(Hz) 

(2) 5mmb   

  ADM     ANSYS     

(2) 10mmb   

   ADM    ANSYS     

1f  0.59 0.59 0.52 0.51 

2f  3.68 3.67 3.17 3.16 

3f  9.88 9.84 8.37 8.33 

4f  17.74 17.66 14.71 14.64 

5f  24.86 24.73 20.49 20.37 

6f  29.04 28.87 24.30 24.12 

7f  31.98 31.81 27.62 27.42 

8f  32.47 32.28 28.22 27.99 

9f  41.20 40.95 41.58 41.20 

10f  42.70 42.44 43.59 43.20 

11f  46.07 45.80 47.59 47.19 

12f  53.35 53.07 54.65 54.28 

In the ANSYS, the elements (solid226) and (solid185) are used to mesh the piezoelectric and non-
piezoelectric layers, respectively. Furthermore, the displacements in the X, Y and Z directions are 
set zero for the nodes at the base of the beam. As an example, the finite element model for 

(2) 10b mm  is shown in Fig. 4. 
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Fig.  4. Finite element model of the PFPB with (2) 10mmb  . 

The ADM is also used to calculate the first two band gaps of this model. Results calculated for 
(2) 5mmb   and (2) 10mmb  are shown in Figs. 5a and 6a, respectively. k is the dimensionless 

wave vector and calculated in Eq. (12). The wave vector is restricted to the first Brillouin zone 
[ 1 , 1]k   . If k is restricted to the first Brillouin zone, every Bloch wave has a unique k . 

Figures 5a and 6a show that there are frequency values for which there is no wave vector. Waves 
of these frequencies cannot propagate in the periodic beam. These frequency intervals are called 
as band gaps and shown by grey regions.  

An excitation with the amplitude of 0 0.1mmw  is applied to the base of this model. Frequency 
responses of the seven cells are calculated using the ANSYS. As an example, frequency responses 
of the second, third and sixth cells for (2) 5mmb   and (2) 10mmb  are shown in Figs. 5b and 6b. 
These figures show that in the band gaps, by moving away from the excitation point, the amplitudes 
of the unit cells decrease. The quantity of the band gaps calculated by these two methods are shown 
in Table. 2.  

Fig.  5. First two band gaps of the PFPB with ܾ(ଶ) = 5݉݉ calculated by: (a) ADM, (b) ANSYS. 
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Fig.   6. First two band gaps of the PFPB with ܾ(ଶ) = 10݉݉ calculated by: (a) ADM, (b) ANSYS. 

 

Table 2. First two band gaps of the PFPB. 
Band gap 

(Hz) 

(2) 5mmb   

  ADM           ANSYS     

(2) 10mmb   

  ADM           ANSYS     

First 3040 3241 2641 2741 

Second 88115 85116 81124 78125 

 

Results show that this model has relatively close natural frequencies and most of them are out of 
the band gaps. Since the piezoelectric energy harvester generates the maximum voltage at the 
resonant frequency, this model generates the maximum voltage over a relatively wide frequency 
range out of the band gaps.   

The seventh and eighth natural frequencies of this model are in the first band gap interval. As an 
example, its seventh mode shapes for (2) 5mmb   and (2) 10mmb  are calculated using the ADM 
and ANSYS. Results are shown in Fig. 7. This figure shows that in the band gap, the amplitudes 
of the cells near to the excitation are larger than other cells. Therefore, the strain curves of the first 
two cells are calculated using the mode shapes and Eq. (32). Results are shown in Fig.8. This figure 
shows that by decreasing the width of the second beam element in each unit cell, the area under 
the strain curves increases. In other words, the PFPB can efficiently generate voltage from the 
localized vibration energy over the band gaps.  

The PFPB with (2) 5mmb   and  also a conventional piezoelectric energy harvester with the same 
material and geometrical parameters as the PFPB are considered. These two harvesters are shown 
in Fig. 9. The same base excitation is considered for both harvesters. Then, the voltage output of 
only the first cell of the PFPB over the frequency range  0 60 Hz is calculated using the ANSYS 
and compared with the voltage output of the conventional harvester. Results are shown in Fig. 10. 
This figure shows that in this frequency interval, the number of resonance frequencies of the PFPB 
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is twice that of the conventional harvester. This figure also shows that in the first band gap, the 
PFPB generates more voltage than the conventional harvester. 

 

Fig.  7. Seventh mode shape of the PFPB with: (a) (2) 5mmb  , (b) (2) 10mmb  (ANSYS ---, ADM __ ). 

 
Fig.  8. Strain curves of the first two cells of the PFPB with: (a) (2) 5mmb  , (b) (2) 10mmb   
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Fig.  9. (a) PFPB, (b) Conventional piezoelectric energy harvester. 

 
Fig.  10. Voltage output of the: (a) PFPB, (b) Conventional piezoelectric energy harvester. 

Most of the periodic beams consist of the connected beam elements [12, 14, 15]). The PFPB can 
be compared to any other periodic beam model. If both of them consist of the same number of 
similar connected beam elements, the PFPB is shorter than the other because of the folded shape. 

6. Conclusions 
A periodic folded piezoelectric beam having special features compared to other periodic 
piezoelectric beams, is introduced. The effects of geometry on the first two band gaps and twelve 
natural frequencies are studied using the ADM. Results show that the PFPB has wide band gaps 
at low frequency ranges and the band gaps are close to each other. Results also show that by 
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properly selecting the width of each beam element, the PFPB can efficiently generate voltage from 
the localized vibration energy over the band gaps. The natural frequencies of the PFPB are close 
to each other and most of them are out of the band gaps. Since the piezoelectric energy harvester 
generates the maximum voltage at the resonance frequency, the PFPB can also generate the 
maximum voltage over a relatively wide frequency range out of the band gaps. Comparing the 
voltage output of the PFPB over a frequency range with that of the conventional piezoelectric 
energy harvester shows that the number of resonance frequencies of the PFPB is twice that of the 
conventional harvester.  Furthermore, in the first band gap, the PFPB generates more voltage than 
the conventional harvester. Another advantage of the PFPB is that its length is less than other types 
of periodic piezoelectric beams. Comparing the analytical results with those obtained from the 
ANSYS software shows that the ADM can be used for the vibration band gap and free vibration 
analysis of the structures composed of any number of connected beam elements with good 
accuracy and low computing time. 
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