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Experimental examination of the gyroscopic and rotary inertia effects on the 

chatter boundary in a milling operation is the chief aim of this article. The 

equations of motion of the tool vibration are derived based on Timoshenko 

beam theory and Hamilton principle by considering gyroscopic moment, 

rotary inertia, velocity-dependent process damping and radial immersion 

effect. For a range of depth of cuts and spindle velocities, the stability of the 

milling process is determined by using the method of multiple scales and 

creating a so-called stability lobe diagram (SLD) in which boundaries 

separate stable area and unstable or chatter area. Then the newly obtained 

SLD with the effects of rotary inertia and gyroscopic moments is verified 

experimentally. Indeed, the verification of the lobes at the speeds where the 

distinction is sound between the conventional lobes and the newly obtained 

lobes is presented. Here, the SLD obtained without the effects of rotary 

inertia and gyroscopic moments is so-called conventional SLD. For this 

purpose, some experiments are conducted to demonstrate the progressive 

move into the unstable zone at the locally optimum point of SLD. Finally, a 

parametric study is presented as a validation of the newly obtained lobes 

from the sense that the effects of different parameters on these limits are as 

expected. 
© 2019 Iranian Society of Acoustics and Vibration, All rights reserved. 
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1. Introduction 

One essential concern in cutting operations is the so-called regenerative chatter that is the most 

frequent type of self-excited vibration between the machine tool and the work-piece. Milling is 

one of the most frequently used operations for machining a wide variety of work-pieces to 
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generate high-accurate parts and first-rate surface finish. This vibration, from a technical point of 

view, is the basic obstruction to guarantee precision and productivity in the machining industry. 

The incidence of chatter may damage the cutter and scrap the work-piece. 

A review of the literature on the subject of the chatter problem confirms that the existing studies 

can be divided into two classifications. The first class includes all those researches that used 

finite degrees of freedom (DoF) in a dynamic model to study machining processes. The second 

class encompasses all those studies that focused on the continuous systems for machining 

process. 

In terms of the first classification, the models used in these studies are mostly 2-dimensional (2-

D) space and Multi-DoF with many simplifying assumptions. One of the first studies, which 

were conducted to identify the regenerative effect as the most important cause of chatter, is due 

to Hanna and Tobias [1]. Lin and Weng [2] represented a set of coupled second-order differential 

equations for a 2-DoF dynamic model of the cutting process by considering nonlinear stiffness 

and nonlinear time-delay terms. Altintas and Budak [3] developed an analytical approach based 

on transfer functions for constructing SLD of a 2-DoF model of the milling operation. Nayfeh et 

al. [4] used the model of Ref. [1] and developed the machine tool dynamics from static cutting to 

chaos using a variety of analytical and computational tools. Altintas and Budak [5] extended the 

model of Ref. [3] by adding the compliance-damping terms in two directions due to the behavior 

of the work-piece. Balachandran and zhao[6] studied work-piece/tool interactions during milling 

of ductile work-pieces with helical tools with a multi-DoF unified mechanics-based model. Pratt 

and Nayfeh [7] studied the chatter stability improvement of machining processes by the addition 

of tuned active vibration absorbers to the structure. Deshpande and Fofana[8] examined the 

chaotic behavior of chatter by considering nonlinear damping and stiffness terms. Moon and 

Kalmar-Nagy [9] illustrated that single-DoF models are not suitable for studying behavior of 

cutter chaos and models with more complexity, such as multi-DoFs based on careful cutting 

force experiments, are required. Balachandran [10] showed that more than one time delay 

parameters are required to study the stability of a general milling process. Fofana [11] 

investigated the stability behavior of machine chatter with deterministic and stochastic 

perturbations by using the delay dynamical system theories. Mann et al. [12] scrutinized the 

influences of asymmetric structural modes and the effects of nonlinear regeneration in a 

discontinuous cutting force with a 2-DoF model. Budak and Ozlu [13] developed a systematic 

model for constructing SLD in boring and turning processes. In addition, they [14] built up a 

comparative examination between 1-D and poly-dimensional steadiness representations for 

turning operations. Vela-Martínez et al. [15]presented a single DoF nonlinear model of a 

machining process and used the method of multiple scales (MMS) to analyze the self-generated 

vibrations of that process. Moradi et al. [16] illustrated a nonlinear 2-DoF model to study chatter 

vibrations analytically in milling operation via the MMS. Besides, they [17] examined tool wear 

and process damping effects in their model. Li et al.[18] presented 1- and 2-DoF models of 

milling processes and used the complete discretization approach, which has more accuracy and 

reliability than semi- and full-discretization methods, to study those processes. Jin et al.[19] 

proposed an improved calculation to forecast the SLD of 2-DoF milling operation with a 

changeable pitch cutter. 

Contrary to the first classification, the second one included fewer efforts. Liao and Tsai[20] 

applied the finite element method (FEM) on a pre-twisted Timoshenko beam model of the helical 
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fluted cutting tool to calculate dynamic tool displacements and cutting forces. Salahshoor and 

Ahmadian[21] modeled the cutter and cutter-holder joints with an Euler Bernoulli beam element 

and torsional/translational dampers/springs, respectively, to obtain the SLD. Catania and 

Mancinelli [22] suggested a discrete modal procedure in terms of Euler Bernoulli beam mode 

shapes for the cutting tool. Movahhedy and Mosaddegh [23] studied the stability of a high-speed 

milling structure with Timoshenko beam model based on finite element matrices in the presence 

of gyroscopic effects. Tajalli et al.[24, 25] examined the stability of a micro end-mill tool by 

applying a numerical method on formulations of the structure that were obtained from strain 

gradient and Timoshenko beam theories. Tavari et al. [26] modeled the work-piece in turning 

operations as a 3-D nonlinear spinning cantilever Euler Bernoulli beam. They used a 

combination of mode-summation and Runge-Kutta methods to achieve an approximated solution 

of their model and scrutinize the effect of some features on the stability results. Jalili and Emami 

[27] applied the MMS on the previous work formulations to derive an analytical solution. Jalili et 

al.[28] studied several types of resonances by using a 3-D spinning cantilever Rayleigh beam 

model for the milling tool by considering structural nonlinearities and gyroscopic and rotary 

inertial dynamics. Mokhtari et al. [29] modeled the milling tool as a 3-D linear spinning 

cantilever bending-bending-torsion Timoshenko beam by considering gyroscopic and rotary 

inertial dynamics. They used an analytical-numerical method, so-called spectral finite element 

scheme, to construct the SLD. Mokhtari et al. [30] scrutinized the chatter phenomenon by using 

a 3-D elastic nonlinear dynamic model of the micro-milling tool with including structural 

nonlinearities, gyroscopic moment, rotary inertia, process damping and size effect. They verified 

their analytical effort by comparing simulated results with the results obtained from chatter tests 

and literature. 

Based on the literature review, the major contribution of current work is the experimental 

verification of formerly published theoretical works[30]. In other words, the verification of the 

lobes at the speeds where the distinction is sound between the conventional lobes and the newly-

obtained lobes is the main purpose of the presented study. 

2. Equations of motion 

Fig. 1 shows a 3-D spinning clamped-free Timoshenko beam that is considered to model the 

milling tool. The geometrical uniformity assumption of the milling tool is included in this model. 

In reference to Fig. 1, the axes     and corresponding unit bases vectors     organized a fixed 

inertial coordinate system  , and axes     and corresponding unit bases vectors     formed a 

local coordinate system   attached to the centerline of the spindle. Spindle framework   tracks 

the rigid body movement of the milling tool that means this framework rotates with respect to   

at a constant spindle speed   .  
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Fig. 1. Schematic of a deformed milling tool in fixed framework   and spindle framework  . 

 

The order three equations of motion for the nonlinear Timoshenko beam model of the milling 

tool can be obtained as explained in Ref. [30] by considering classical continuum beam theory.  

3. Non-dimensional equations of motions 

Typically, the dimensionless methodology generalizes the problem. From the viewpoint of the 

milling process, the analysis of dimensional form is the analysis of a particular problem. Unlike 

this, non-dimensional analysis can be established by a set of dimensionless parameters. Using a 

non-dimensional analysis can illustrate various dimensional solutions. The dimensionless factors 

utilized for current research are tabulated in Table 1. 

Table 1. Non-dimensional parameters 

Symbol Definition Symbol Definition 
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In Table 1, the parameters    and    are the lateral deflections at the spindle frame, 

respectively. Besides,   (   ) and   (   ) are rotations due to    and   , respectively. In 

addition, parameters {     } are the cutting factors of movements in tangential and radial 

directions, parameters {     } are the process damping coefficients in radial and tangential 
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direction,   is the depth of the cut,    is the tool diameter, and    is the feed per tooth. Besides, 

parameters   ,   ,   ,  ,  ,  ,  , and   represent the mass per unit volume, the natural 

frequency, the damping ratio in the bending movement, the damping ratio in the rotary 

movement, the cross-section area, the length of the tool, Young’s modulus, and the shear 

modulus, respectively. The symbols    and    indicate damping coefficients in the bending and 

rotary movements, respectively. 

4. Reduced-order model  

For solving the milling tool’s non-dimensional PDEs, the Galerkin method is employed to reduce 

the equations to dimensionless ODEs. Consequently, the functions   
 ,   

 ,   
 , and   

  can be 

presented as the multiplication of two separated non-dimensional spatial and time functions as: 

   
 (     )    ( 

 )   ( 
 )                                                     

 (     )    ( 
 )   ( 

 ) 
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 (     )    ( 

 )   ( 
 )                                                    

 (     )    ( 
 )   ( 
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where         and          are the fundamental non-dimensional mode shapes of 

a non-rotating milling tool in bending and transverse rotation obtained from the dynamic 

stiffness matrix scheme [24, 28], respectively. Now with multiplying non-dimensional mode 

shape functions on each side of PDEs of motion and integrating over the tool non-dimensional 

length, the acquired ODEs can be obtained: 
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in which         ⁄ ,        ,     (     ),         is delay time, and   is 

the total number of teeth. 
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5. Multiple scale method 

The method of multiple-scale (MMS) is a strong approach among perturbation methods for 

solving nonlinear equations. Based on MMS, the proposed solution of Eq. (3) is: 

    ( 
   )   (    )    (     )     (     )   (  )  

(5) 

    ( 
   )   (    )    (     )     (     )   (  )  

    ( 
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   )   (    )    (     )     (     )   (  )  

 

The character   is a small factor representing the time scale [31]. In order to have the nonlinear, 

time delay, viscous and process damping terms appear in the same perturbation equations, some 

coefficients should be scaled as follows: 
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Applying MMS and substituting Eqs. (5) and (6) into Eq. (3) and arranging based on    and   , 

the solution of the zero-order equation can be supposed as follows: 
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where    stands for the complex conjugate of the prior terms. Moreover, the parameters    and 
{           } are the real positive eigenvalues and corresponding eigenvectors, respectively, 

that are related to the zero-order equation. Substituting the solution of the zero-order equation 

into the first-order equation and eliminating the terms that lead to secular terms, solvability 

condition can be obtained in a non-resonant excitation case. In this case, putting     
  (  )   [   (  )] in the equations resultant from secular terms leads to: 
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where  ̇       ⁄ . Separating real and imaginary parts of Eq. (8) yields the solution of   (  ) 
and   (  ). Based on the solutions, the tool can be experienced chatter phenomena in the 

following conditions: 

 

   
   

    
   
   

    
   
   

    
   
   

    (9) 

6. Results and discussion 

To analyze the stability of the milling process, a set of realistic nominal values of the necessary 

parameters presented by Moradi et al. [32] are listed in Table 2. 

Table 2. Necessary parameters introduced by Moradi et al. [32] 

Parameter Value Parameter Value 

Tool material High-speed steel (HSS)    (           )     

Work-piece material AL7075     ⁄    

               

              

    Stable depth at                   

           ⁄  Unstable depth at                    

           ⁄  Stable depth at                     

   (           )       Unstable depth at                     

 

Based on the values of parameters tabulated in Table 2 and Eq. (9), the corresponding SLD can 

be constructed with and without gyroscopic and rotary effects by the solution method of the 

current work as Fig. 2. Moreover, the experimental results obtained by Moradi et al.[32] are 

presented in Fig. 2. This figure shows that the results obtained from the current model are in 

excellent agreement with the experimental results derived by Moradi et al.[32]. In all SLDs of 

the current effort, the area down/up the lobes is stable/unstable zone for milling operation. 
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(a) 

 

(b) 

Fig. 2. Effect of gyroscopic and rotary terms on the stability of the system (solid line: with gyroscopic and rotary 

effects, dash line: without gyroscopic and rotary effects), (a) Analytical and laboratory-measured stability lobe (the 

signs   and ● show unstable and stable conditions), and (b) Zoom-in on SLD at speeds 6290 and 8250 rpm. 

 

From Fig. 2, it can be seen that disregarding the effects of rotary inertia and gyroscopic moments 

in the modeling of the milling tool causes significant errors on the stability estimation, especially 

on the locally optimum point of SLD. It seems like the speeds of 8000 and 10000 rpm are not 

where the current model distinguishes itself from a model without gyroscopic and rotary effects 

such as the model of Ref. [32]. Take into account that Mokhtari et al. [30] have formerly 

published the solution method of the current study. However, it is interesting to validate this 

solution method at speeds where the distinction is sound (say at 6290 and 8250 rpm). Therefore, 
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the main purpose of this section is an experimental investigation of the gyroscopic and rotary 

inertia effects on the chatter boundary in the presented milling process. 

For this purpose, a number of chatter tests are performed on an in-house CNC machine with 

maximum spindle speed            . It should be noted that the milling tool and work-

piece are selected as introduced in Table 2. The experimental setup is shown in Fig. 3. 

 

Fig. 3. The chatter test setup. 

Generally, the chatter frequency is a frequency near the tool natural frequency. Therefore, it is 

essential to find the natural frequency of the tool. The natural frequency of the cutting tool is 

extracted using a modal test based on Fig. 4. 

 

Fig. 4. The modal test setup of the tool tip in the lateral direction. 
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For modal tests, a signal analyzer type VibroRack 1000 made by ABP corporation is used. A 

piezo-electric type accelerometer type AP203-100 made by Global Test for response 

measurement and the hammer type AU-02 made by Global Test is used for the modal test. The 

modal tests are carried out in the lateral direction. The modal tests are repeated five times and 

frequency response is achieved by averaging of these data. The frequency response of receptance 

function, between the exerted force and tool displacement in the lateral direction is presented in 

Fig. 5. 

The first tool natural frequency from the modal test is close to         and from the dynamic 

stiffness matrix method (see section 4 of Ref. [30] and section 3.2 of Ref.[24]) is           . 
Comparing these values shows the accuracy of the proposed model. 

 

Fig. 5. The frequency response of the receptance function of the tool tip in the lateral direction. 

To detect chatter frequency, a microphone is used to measure the sound signals during cutting 

tests (see Fig. 3). Each chatter test at a certain spindle speed and a certain cutting depth is 

executed six times. Corresponding fast Fourier transform (FFT) of the resultant sound signals at 

spindle speeds                 are presented in Fig. 6(a) and Fig. 6(b), respectively. In 

these figures, the FFT diagrams of all experiments at a certain spindle speed are compressed into 

a 3D plot. These experiments are conducted to demonstrate the progressive move into the 

unstable zone. Chatter is recognized when the magnitude of sound spectrums at a frequency near 

the tool natural frequency becomes relatively high. In addition, the other peaks are at the tooth 

passing frequency harmonics. Consequently, based on Fig. 6(a) and Fig. 6(b), the peak appeared 

at         is due to chatter occurrence and the other peaks are related to the tooth passing 

frequency harmonics. As a result, the tool at                 and depth of cut   
                 is stable, respectively. Also, chatter can happen at                 

and depth of cut                   , respectively. It should be noted that 

                 are the tooth passing frequency at                    , respectively. 

These experimental results and constructed SLD with/without gyroscopic and rotary inertia 

effects are presented in Fig. 6(c). 
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(a)  

 

(b)  

 

(c)  

 

Fig. 6. (a) The FFT diagrams of sound signals at           , (b) The FFT diagrams of sound signals at   
        , (c) Analytical and laboratory-measured stability lobe (signs   and ● show unstable and stable 

conditions). 

Surface conditions for these spindle speeds are also shown in Fig. 7. As shown in Fig. 7(a) and 

Fig. 7(b), at spindle speed                 for the depth of cut bellow               , 

respectively, the machined surface has a smooth finish without ripples. But at the depth of cut 
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              , respectively, the machined surface exhibits an undulated finish. These 

results confirm the results obtained from the sound test. 

 

(b) 

 

(a) 

Fig. 7. Surface finish results at different cutting depths at spindle speeds (a)           , (b)           . 

Therefore, the SLD obtained with the effects of rotary inertia and gyroscopic moments is verified 

experimentally at the speeds where the distinction is sound between the conventional lobes and 

the newly obtained lobes in Fig. 6 and Fig. 7. In other words, Fig. 6 and Fig. 7 depict the 

experimental inspection of the gyroscopic and rotary inertia effects on the chatter stability in the 

current milling process. 

Here, a parametric study is presented. Fig. 8 explains the effects of force coefficients on the 

chatter occurrence probability. These figures demonstrate that decreasing the tangential and 

radial force coefficients may lead to increase the stability and vice versa. Some realistic 

examples of reducing these coefficients are submerging the tool/work-piece system in viscous 

fluid[33] and using cryogenic cooling system during milling process [34]: 

 

(c) 

Fig. 8. Effect of generative force coefficients on the stability of the system. 

The effect of immersion ratio on the stability area of the tool is showed up in Fig. 9. The most 

notable viewpoint of this figure is that the smaller immersion ratio estimates more stability than 

does the bigger one. 
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Fig. 9. Effect of immersion ratio on the stability of the system. 

The effect of the tool length on the chatter stability is illustrated in Fig. 10. Because the 

dimensionless parameters corresponding to spindle speed and cutting depth change by varying 

the tool length, Fig. 10 is presented with dimensional parameters. It can be seen from the 

mentioned figure that increasing tool length can stretch the lobes, reduce the number of lobes, 

and decrease the stability of the process. 

 

Fig. 10. Effect of tool length on the stability of the system. 

The influence of the tool diameter on SLD of the operation is presented in Fig. 11. For the reason 

that the non-dimensional parameter related to spindle speed changes by varying the tool 

diameter, Fig. 11 is conducted based on dimensional parameters. According to the mentioned 

figure, the SLD achieves a horizontal and vertical shift by varying tool diameter. Generally, 

increasing this parameter can enlarge the stability of the process. 
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Fig. 11. Effect of tool diameter on the stability of the system. 

The parametric study is presented as a validation of the newly-obtained lobes from the sense that 

the effects of different parameters on these limits are as expected. 

7. Conclusion 

In this research, the prediction of chatter occurrence in the milling operation has been examined 

by employing a 3-D nonlinear dynamic model of the milling tool. A spinning cantilever 

Timoshenko beam that is excited by the cutting forces is used to model the cutting tool. The 

multiple scales method has been used to achieve analytical responses for nonlinear delay partial 

differential equations of motion. The obtained SLD with the effects of rotary inertia and 

gyroscopic moments has been validated experimentally. Indeed, the validation of the lobes at the 

speeds where the distinction is sound between the conventional lobes and the newly obtained 

lobes has been illustrated. 
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