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Nonlinear energy A semi-analytical method is used to illustrate the behavior of a
harvesting multimodal nonlinear electromechanical system which is under base-
Multimodal duffing excitation. System is considered as piezo-ceramic patches attached to
oscillator a cantilever beam coupled to a resistive load. The cantilever beam is
Complexification modeled as a nonlinear Timoshenko beam using Assumed Mode
averaging method method and equations of motion are derived through Lagrange's
Arc length equation.. Nqnlinear rpultimodal equations are solved w.ith
continuation method Complexification Averaging method and results are compared with

numerical simulations. Arc length Continuation method is used to
achieve frequency response of the system. Results are presented for
different values of geometric and physical parameters and the effect of
this variations are discussed.
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1. Introduction

Energy harvesting form ambient vibrations has been most heavily researched in the last decade
because of its useful applications [1]. One of this applications is preparing the energy requested
by small electronics like wireless sensors that are hard to reach and replacement of their battery
is impossible. Although linear energy harvesters were proposed at first, later research indicated
that the narrow band nature of these systems affects their efficiency [2]. Nonlinear energy
harvesting systems are proposed as a solution to this problem [3].

Mann and Sims [4] introduced an energy harvester which utilizes magnetic levitation in order to
produce a system with a tenable resonance. The results indicated that response of the nonlinear
system is in the large amplitude oscillations in wider range of frequencies relatively. In [5, 6], a
Duffing oscillator for broadband piezoelectric energy harvesting is investigated experimentally
and analytically. They used a cantilever piezoelectric beam as a nonlinear energy harvester. It is
showed that, there is a region in which the system has three possible responses and there is jump
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phenomenon in the frequency response capture of the system. It is showed that, the nonlinear
system has broader frequency bandwidth over the linear one. In [7], Karami and Inman
proposed a method to approximate electromechanical coupling as equivalent changes in damping
and excitation frequency in order to simplify the analyses of energy harvesting systems. The
method in this paper is verified by hybrid piezoelectric and electromagnetic energy harvester
system in linear, softly nonlinear and bi-stable cases. They showed when an optimal resistant
load is used, the amplitude of mechanical vibrations is the smallest.

Some of researchers considered random excitations in order to examine the performance of the
nonlinear energy harvesters. Daqaq [8] investigated energy harvesting of a unit-modal Duffing
oscillator under white and color Gaussian noise and concluded that the mean output power of the
harvester is not influenced by the stiffness-type nonlinearities, however other types of
nonlinearities such as damping and inertia may be beneficial. Authors of [9] studied energy
harvesting of monostable Duffing oscillator under Gaussian excitation. They examined the
effects of spectral density of random excitation and the cubic nonlinearity on the output voltage.
The results indicated that increases in the cubic nonlinearity led to increase in output voltage for
reasonable larger excitation spectral density. However, for smaller density, output voltage
slightly decreases with the increase in cubic nonlinearity. Masan and Daqaq in [10] investigated
the influence of stiffness-type nonlinearity on the transduction of vibratory energy harvesters
under band-limited noise. They considered the harvester as a bimorph clamped-clamped beam
subjected to an axial load so as to analyse both pre-buckling and post-buckling configurations.
The results pointed out that for small base accelerations both configurations produce maximum
voltage when the centre of frequency of the excitation matches the tuned oscillation frequency of
the harvester, regardless to the frequency bandwidth which means that the nonlinearity can be
neglected in this case. Nevertheless, in larger excitation amplitudes maximum voltage variance
will occur at larger or smaller frequencies due to different nature of nonlinearity (hardening or
softening) in both configurations.

In most former studies, energy harvesting systems are considered as uni-modal systems,
however, a single-mode approximation underestimates the actual output power of the device [3]
at the other hand multimodal systems' responses are in the larger amplitudes in a wider range of
frequency over their single-mode counterparts. In this paper, an assumed-mode modelling of the
bimorph piezoelectric energy harvester is presented and the effect of the number of the shape
modes is investigated. The beam is modelled using Timoshenko beam theory and equations of
motion derived using Lagrange's equation. In multimodal nonlinear case applying perturbation
techniques is very complicated because there are lots of resonance frequencies that should be
investigated separately and for higher number of modes it is impossible to use perturbation
techniques. Because of this, nonlinear multimodal equations of motion is solved using
Complexification Averaging Method. Frequency response captures are obtained through Arc
Length Continuation Method. Effect of changing the number of shape modes, base acceleration,
and piezoelectric patches’ length are given.
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2. Assumed-mode modeling of piezoelectric energy harvester

%LPRUSK SLHIRHOHFWULF HQHUJ\ KDUYHVWHU DQG PF

Two piezoelectric patches are coupled to the upper and lower faces of the beam structure and
perfectly conductive electrodes fully cover the piezoelectric patches and the electrodes are
coupled to a resistive electrical load in a series configuration (Fig. 1). A tip mass is attached to
cantilever con-figuration. The system is under base excitation and the base motion can be
expressed as:
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Fig. 1. Piezoelectric energy harvester configuration
The longitudinal axis is denoted by T;and the transverse axis by T.

'LVSODFHPHQW ILHOG DQG HQHUJ\ WHUPYV
The displacement field in Timoshenko model is [3]:
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where Q, @Q are the displacements in longitudinal and transverse directions and 0:Ts&P, is the
cross section rotation. The nonlinear strains are:

O I CN d A d G ¢0 s ¢¢ ¢
EEL— E-H—p E I= E I— IL Fl,—=— E- I 3
s e TP Bl P ¢l Tt e ®)
. Lc‘(E ¢ LC(7 E o @
T el e
The substructure beam stresses are:
E‘L“LF‘“ICOEE‘ Gy ©)
: - "¢t e
ey oy LG
€S L&)k Lc)<IC—_|EFOp i

75



0 ORKDPPDBWRXW -RXUQDO Rl 7TKHRUHWLFDO DQG $SSOLHG 9LEUDWLRQ

where ' and )@ are the elastic and shear modulus of the beam substructure. Stresses in
piezoelectric layers are:
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where 74 and A5 are the shear modulus and effective piezoelectric stress constant of
piezoelectric layers. According to equations (3-10), the total potential is:
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where 4 #5 & #; and 35 are the second moment of area and cross section area of the
substructure beam, the second moment of area, the cross section area and first moment of area of
piezoelectric layer. Electrical load displacement in piezoelectric layers are [3]:
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where a,is the permittivity of piezoelectric layer. The work of electric field in piezoelectric
layers is:
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The total displacement is:
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The total kinetic energy according to (14) is:
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The Rayleigh dissipation function for external damping is:
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where ?is the damping coefficient. The non-conservative work in electric resistive load is:
9, Lt3I (17)

where and ~are the electrical load crossing resistance and voltage of each piezoelectric layer
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For Timoshenko beam first we define new parameter as:
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Allowable test functions must satisfy natural and ‘geometric boundary conditions. Displacements
are rewritten with finite series as [4]:
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where Uis the solution of:
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The Lagrange equation is:
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The dimensionless parameters are defined as,
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The dimensionless dynamic equations of the system are
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3. Complexifiaction averaging method

As it was mentioned before, the nonlinear equations must be solved analytically to achieve
frequency response captures. For the uni-modal case, perturbation analysis is used in previous
works but it is useless for the multimodal case. Complexification averaging method [11] is used
in this paper for solving the equations (28-30). For showing the procedure of complex averaging
method, we will solve the uni-modal case. The multimodal case has a similar procedure.
Equations of motion in uni-modal case are:

| s 8 Elgle E%R EC ke ECo le E-5 8 FUFLE.. 3 31)
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For solving equations (31-33) new variables are defined as [4]:
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where Ushows the complex conjugate of the variable. Solutions of 25, 2gand 2;in the complex
averaging method is considered a harmonic with the same frequency of actuation as:
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Substituting (36) into (35) and substituting the result in equations (31-33) and considering only
the slow terms leads to:

L6 100 B8 B 1 ¢ 10, B2 B2 0, F (o F (2t \o;ogE(\o7LE (37)
s Ve B EE s IRe B B e P s g P heqg P a5 t3 t
130: 130, 10 10¢ _ .10,
10. E— —= —F(—= 38
ls 10c E——FEl 610 E——F G Flg FlogLr (38)
. . 10,
O7EEEOEFE€O€FEﬁLr (39)

For steady state condition, equations (37-39) lead to algebraic equations that can be solved easily
and solving them results in the limit cycle oscillations of primary system. Multimodal equations
of motion can be solved with a similar procedure.
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Fig. 2. Validation of the result of complex averaging method

4. Results and discussion

In order to validate the response of the system, a numerical simulation using the Runge-Kutta
method is compared with the response achieved by complexification averaging method. Fig. 2
shows the high accuracy of the method in steady-state response of the system. Solving the
algebraic equations achieved from the complex averaging method leads to the amplitude of the
limit cycle oscillations. Therefor, for frequency response captures, these algebraic equations
should be solved for a range of frequencies but this work could be impossible or time consuming
for some frequencies. Hence, the Arc-length Continuation method is used. Values of geometric
and material properties of the system are showed in the Table 1 [12].

Table 1. Geometric and material properties
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Fig. 3. Effect of number of shape modes on amplitude of vibration

Fig. 3 shows that the solution is converged in more than two mode shapes. Fig. 4 shows that the
uni-modal case can't predict the second, third and higher resonance peaks of the response. In the
uni-modal case, there is a region that three different amplitudes are available. However, in the
multimodal case, there is a region that five different amplitudes are available. Fig. 5 shows the
stability analysis of the frequency response of the system. It indicates that the response of
medium range amplitude is unstable and the two others are stable.

40

Fig. 4. Effect of number of shape modes on output voltage
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Fig. 5. Stability analysis of the frequency response

As it can be seen in Fig. 6, increase in the length of the beam results in increase of output voltage
and decrease in vibration amplitude . It is an obvious result because the rate of strain is more in
the root of the beam. Fig. 7 shows that in higher base acceleration, both end deflection vibration
and output voltage are higher because more energy is applied to the base of the system.
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Fig. 6. Effect of piezoelectric layers length on the amplitude of end deflection and output voltage
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Fig. 7. Effect of base acceleration on the amplitude of end deflection and output voltage

5. Conclusion

A cantilever beam is modeled as a Timoshenko beam using Assumed Mode Method in this
paper. The derived equations of motion are solved using the Complex Averaging Method.
Frequency response captures are achieved using the Arc-length Continuation method. Frequency
captures are provided for different values of problem parameters and it is understood that:

1. Unimodal consideration can't predict the behavior of the system correctly and the solution is
converged in more than two mode shapes of vibration.

2. Increasing base acceleration results in increasing amplitude of vibration and output voltage.

3. Power generation is maximum when the ends of the piezoelectric layers are close to the root of
the beam.
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