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In this paper, the Ritz method has been employed to analyze the free in-
plane vibration of heterogeneous (non-uniform) rectangular nanoplates 
corresponding to Eringen’s nonlocal elasticity theory. The non-uniformity is 
taken into account using combinations of linear and quadratic forms in the 
thickness, material density and Young’s modulus. Two-dimensional 
boundary characteristic orthogonal polynomials are applied in the Ritz 
method in order to examine the nonlocal effect, aspect ratio, length of 
nanoplate and non-uniformity parameters on the vibrational behaviors of the 
nanoplate. Results are verified with the available published data and good 
agreements are observed. The outcomes confirm apparent dependency of in-
plane frequency of nanoplate on the small scale effect, non-uniformity, 
aspect ratio and boundary conditions. For instance, frequency parameter 
decreases by increasing the nonlocal parameter in all vibration modes; the 
frequency parameters increase with length and aspect ratio of nanoplates. 
Furthermore, the effect of nonlocal parameters on the frequency parameter is 
more prominent at the higher aspect ratios. Finally, the effect of nonlocal 
parameter on the in-plane modes is also presented in this analysis. 
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1. Introduction 

Nanomaterials have recently attracted much attention among the researchers of chemistry, 
physics and engineering due to their special mechanical, chemical, electrical, electronic and 
optical properties (Thomas and Aneesh, 2014 [1]). These special properties are obtained from 
their nanoscale dimensions (Murmu and Adhikari, 2010 [2]). Some examples of these 
nanomaterials are nanoclusters (Baletto and Ferrando, 2005 [3]), nano-balls, nano-fibers, 
nanorods (Afolabi et al., 2009 [4]), thin films, engineered surfaces, carbon nanotubes (CNTs), 
mono- and multi-layer graphene sheets (Nagashio et al., 2009 [5]). Nanoclusters, nanobeams and 
nanoplates have been considered as zero, one and two dimensional nanomaterials respectively 
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(Gusev and Rempel� , 2004 [6]). These excellent nanomaterials have numerous applications in 
the field of semiconductor devices, nano-actuators, atomic force microscope (AFM) tips, 
biological sensors, drug carriers, bio-probes and implants (Li et al., 2015 [7]). 

In order to properly design nanostructures, their mechanical behavior should be thoroughly 
explored both experimentally and theoretically. Experimental analyses provide more accurate 
results, however, conducting experiments on nanoscale devices is extremely challenging, 
expensive and time consuming (Favero et al., 2009; Poot and Van der zant, 2008 [8, 9]). As a 
result, in the literature, many contributions have been focused on developing appropriate 
theoretical models to predict nanostructures’ behaviors. Theoretical models are generally divided 
into three major categories: (i) atomistic modeling (Ball, 2001; Baughman et al., 2002 [10, 11]), 
(ii) hybrid atomistic-continuum mechanics (Bodily and Sun, 2003; Li and Chu, 2003 [12, 13]) 
and (iii) continuum models. Atomistic (discrete) and hybrid atomistic-continuum mechanics 
models such as molecular dynamics (MD) (Liu and Wang, 2015 [14]), molecular structural 
mechanics (MSM) (Li and Chu, 2005 [15]) and density functional theory (Yumura, 2011 [16]) 
require a large amount of computations and are not recommended for large-scale nanostructures.  
The third major category, continuum mechanics, includes classical (local) and non-classical 
(nonlocal) continuum approaches. The classical continuum approach cannot be used in modeling 
of nanostructures because of ignoring small-scale effects. Therefore, the non-classical continuum 
approaches have been widely applied to model nanostructures (Lu et al., 2006; Shen, 2011; 
Adali, 2012; Karamooz and Shahidi, 2013; Wang et al., 2011 [17-21]). This approach accounts 
for the effect of small-length scales (distance between individual atoms, surface properties and 
particle size) in studying the mechanical behavior of nanostructures. Nonlocal elasticity theory 
proposed by Eringen (1972, 1983 and 2002 [22-24]) has been widely employed for 
nanostructures among other nonlocal continuum mechanics. This theory states that the stress 
field corresponds to the strain tensor not only at a specific point, but also at the entire domain. 
Nonlocal elasticity theory has been employed to investigate the static, buckling, bending and free 
vibration behavior of nanorods (Chang, 2012 [25]), nanobeams (Loya et al., 2009 [26]), 
nanoplates (Aksencer and Aydogdu, 2011; Anjomanshoa, 2013 [27, 28]) and nanoshells (Hu et 
al., 2008 [29]).  

In spite of the vast literature on free transverse vibration of nanobeams, nanoplates and 
nanoshells, few works have been dedicated to the nonlocal elasticity of free in-plane vibrations 
(FIV) for nanoplates (graphene sheets). In-plane modes of nanoplates (GSs) occur at high 
frequencies. However, flexural modes exhibit at lower frequencies and thus, they can be of very 
useful implication at high operating frequencies (Bansal and Lamon, 2015 [30]). Nanoplates 
employed in nanoelectromechanical resonators can be enormously excited and demonstrate in-
plane modes (Yantchev and Katardjiev, 2013 [31]). In summary, it is necessary to obtain a 
comprehensive physical and mathematical understanding of the in-plane vibration of nanoplates.  

The free in-plane vibration of nanoplates using nonlocal continuum mechanics is studied by 
Murmu and Pradhan (2009 [32]) and relations for the natural frequencies are derived using the 
separation of variables method. The effects of nonlocal parameter (scale coefficient) have been 
only investigated in their studies. Their computational approaches may not be generally applied 
to analyze FIV of nanoplates for all combinations of boundary conditions and non-uniform 
geometries of nanoplates. Non-uniform geometries of the nano-components must be taken into 
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account in order to efficiently design nanostructures (Cumings et al., 2000 [33]).  This non-
uniformity gives efficient vibration control in nano-sized structures (Brodsky, 2010 [34]). 

To the best of authors’ knowledge, the effects of non-uniformity on the in-plane vibration of 
nanoplates have not been previously presented based on any experimental and nonlocal 
continuum model. Therefore, in this paper, the effects of non-uniformity along with the small-
scale effects on the FIV of nanoplates are presented. Here, the non-uniformity is considered 
using variable thickness, material density and Young’s modulus. In this paper, the Ritz method, 
as an approximate numerical approach, is used to examine FIV of non-uniform nanoplates. The 
Ritz method has been previously employed for vibration analysis of nanobeams (Xu and Deng, 
2014; Koochi et al., 2014; Chakraverty and Behera, 2015 [35-37]) and nanoplates (Chakraverty 
and Behera, 2014 [38]). In order to study the FIV of nanoplate, boundary characteristic 
orthogonal polynomials (BCOPs) (Bhat, 1985; Bhat, 1991; Dickinson and Diblasio, 1986; Singh 
and Chakraverty, 1994(a,b); Chihara, 1987; Gautschi et al., 1999 [39-45]) are applied in the 
Rayleigh-Ritz method. The BCOPs are generated through the Gram-Schmidt orthonormalization 
process. These polynomials used in the Ritz method carry out the process computationally 
efficient. This occurs because some entries of stiffness and mass matrices of the generalized 
eigenvalue problem become one and zero due to the orthonormality of the supposed shape 
functions.  In this study, the effect of non-uniformity parameters, nonlocal parameter, boundary 
conditions, aspect ratio, length of nanoplate and mode number on the FIV of nanoplates are 
investigated. Moreover, the impact of small-scale effect on mode shapes of a non-uniform 
nanoplate is also presented.  

2. Theoretical formulations 

2.1. Theoretical formulation of nanoplate 

A rectangular nanoplate with length and width ܽ and ܾ are considered as shown in Fig. 1. The 
origin point of the coordinate system is located at one corner of the nanoplate. The ݔ and ݕ axes 
are placed along the edges of the nanoplate and the ݖ-axis is normal to the ݕݔ-plane as depicted 
in Fig. 1. 

 

 
Fig. 1. A schematic of the nanoplate and the considered coordinate system 
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The nonlocal theory of elasticity considers that the stress at one point is a function of the strains 
at all other points in the body. Based on this assumption, the nonlocal constitutive relation for a 
Hookean solid is presented as follows (Lu et al., 2007 [46]): 

 ൫1 − ݁଴ଶ݈௜௡ଶ∇ଶ൯ߪ௡௟ =  ௟ (1)ߪ

where ݈௜௡, ݁଴ and ∇ଶ denote an internal characteristic length, a constant for a specific material 

and the 2D Laplacian operator expressed in the Cartesian coordinate system ∇ଶ= ቀ డమడ௫మ + డమడ௬మቁ 

respectively. Equation 1 can be written in the following two dimensional forms for FIV of 
nanoplates,  

௫௫ߪ  − ݁଴ଶ݈௜௡ଶ ቆ߲ଶߪ௫௫߲ݔଶ + ߲ଶߪ௫௫߲ݕଶ ቇ = ,ݔ)ܧ 1)(ݕ − (ଶߥ ൬߲ݔ߲ݑ + ߥ  ,൰ݕ߲ݒ߲
௬௬ߪ (2) − ݁଴ଶ݈௜௡ଶ ቆ߲ଶߪ௬௬߲ݔଶ + ߲ଶߪ௬௬߲ݕଶ ቇ = ,ݔ)ܧ 1)(ݕ − (ଶߥ ൬ߥ ݔ߲ݑ߲ +  ൰ݕ߲ݒ߲

௫௬ߪ − ݁଴ଶ݈௜௡ଶ ቆ߲ଶߪ௫௬߲ݔଶ + ߲ଶߪ௫௬߲ݕଶ ቇ = ,ݔ)ܧ 1)2(ݕ + (ߥ ൬߲ݕ߲ݑ +  ൰ݔ߲ݒ߲

where ݔ)ܧ,  are the elastic modulus and Poisson’s ratio of the non-uniform nanoplate ߥ and (ݕ
respectively. Also, ݑ and ݒ denote the in-plane displacements along x and y directions, 
respectively. The equation of motion for FIV of plates can be written as (Gorman, 2004 [47]): 

 ߲ ௫ܰ௫߲ݔ + ߲ ௫ܰ௬߲ݕ = ,ݔ)ߩ ℎ(ݕ ଶݐଶ߲ݑ߲  

(3) 
 ߲ ௬ܰ௬߲ݕ + ߲ ௫ܰ௬߲ݔ = ,ݔ)ߩ ℎ(ݕ ଶݐଶ߲ݒ߲  

where ݔ)ߩ,  :and ℎ denote the mass density and the thickness of the plate respectively and ௫ܰ௫, ௬ܰ௬ and ௫ܰ௬ are the axial stress resultants expressed as (ݕ

 ௫ܰ௫ = ׬ ௛/ଶି௛/ଶݖ݀ ௫௫ߪ  , ௬ܰ௬ = ׬ ௛/ଶି௛/ଶݖ݀ ௬௬ߪ , ௫ܰ௬ = ׬ ௛/ଶି௛/ଶݖ݀ ௫௬ߪ  (4) 

The above stress resultants are obtained by integrating Eq. 2 with respect to the thickness of the 
plate as follows: 

 ௫ܰ௫ − ݁଴ଶ݈௜௡ଶ ቆ߲ଶ ௫ܰ௫߲ݔଶ + ߲ଶ ௫ܰ௫߲ݕଶ ቇ = ,ݔ)ܧ ℎ(1(ݕ − (ଶߥ ൬߲ݔ߲ݑ + ߥ  ൰ݕ߲ݒ߲

(5) 
 ௬ܰ௬ − ݁଴ଶ݈௜௡ଶ ቆ߲ଶ ௬ܰ௬߲ݔଶ + ߲ଶ ௬ܰ௬߲ݕଶ ቇ = ,ݔ)ܧ ℎ(1(ݕ − (ଶߥ ൬ߥ ݔ߲ݑ߲ +  ൰ݕ߲ݒ߲

 ௫ܰ௬ − ݁଴ଶ݈௜௡ଶ ቆ߲ଶ ௫ܰ௬߲ݔଶ + ߲ଶ ௫ܰ௬߲ݕଶ ቇ = ,ݔ)ܧ ℎ2(1(ݕ + (ߥ ൬߲ݕ߲ݑ +  ൰ݔ߲ݒ߲

The governing equations of motion for FIV of non-uniform nanoplate in Cartesian coordinates 
can be obtained by substituting Eq. 5 into Eq. 3 as follows: 
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ݔ߲߲  ൭ݔ)ܧ, ℎ(1(ݕ − (2ߥ ൬߲ݔ߲ݑ + ߥ ൰൱ݕ߲ݒ߲ + ݕ߲߲ ൭ݔ)ܧ, ℎ2(1(ݕ + (ߥ ൬߲ݕ߲ݑ + ൰൱ݔ߲ݒ߲ − ,ݔ)ߩ ℎ(ݕ ଶݐଶ߲ݑ߲  

(6-a) 
 +݁଴ଶ݈௜௡ଶ 2ݔ2߲߲ ቆݔ)ߩ, ℎ(ݕ ଶݐଶ߲ݑ߲ ቇ + ݁଴ଶ݈௜௡ଶ 2ݕ2߲߲ ቆݔ)ߩ, ℎ(ݕ ଶݐଶ߲ݑ߲ ቇ = 0, 
 

ݕ߲߲  ൭ݔ)ܧ, ℎ(1(ݕ − (2ߥ ൬ߥ ݔ߲ݑ߲ + ൰൱ݕ߲ݒ߲ + ݔ߲߲ ൭ݔ)ܧ, ℎ2(1(ݕ + (ߥ ൬߲ݕ߲ݑ + ൰൱ݔ߲ݒ߲ − ,ݔ)ߩ ℎ(ݕ ଶݐଶ߲ݒ߲  

(6-b) 
 +݁଴ଶ݈௜௡ଶ 2ݔ2߲߲ ቆݔ)ߩ, ℎ(ݕ ଶݐଶ߲ݒ߲ ቇ + ݁଴ଶ݈௜௡ଶ 2ݕ2߲߲ ቆݔ)ߩ, ℎ(ݕ ଶݐଶ߲ݒ߲ ቇ = 0. 
Equations (6-a) and (6-b) are the consistent basic equations for the FIV of non-uniform nanoplate 
model. These equations are reduced to the FIV equation of non-uniform local plate when ݁଴݈௜௡ = 0.  Equations 6 are the strong form of the governing equations for the FIV of non-
uniform nanoplate corresponding to the nonlocal elasticity theory. Owing to the fact that finding 
the exact solution for a strong form of FIV for non-uniform nanoplate is commonly difficult, a 
weak form of their equations is usually produced for the processes. Here, weighted residual 
method as a general mathematical tool is used in order to create the weak form of the governing 
equations of motion for the FIV of non-uniform nanoplate. Based on this approach, the weighted 
residual formulation of the equation of motion in Eqs. 6 is obtained as: 

 ඵ ߰௨(ݔ, (ݕ ቌ ݔ߲߲ ൭ݔ)ܧ, ℎ(1(ݕ − (ଶߥ ൬߲ݔ߲ݑ + ߥ ൰൱ݕ߲ݒ߲ + ݕ߲߲ ൭ݔ)ܧ, ℎ2(1(ݕ + (ߥ ൬߲ݕ߲ݑ + ൰൱ݔ߲ݒ߲ − ,ݔ)ߩ ℎ(ݕ ଶ஺ݐଶ߲ݑ߲ + ݁଴ଶ݈௜௡ଶ ߲ଶ߲ݔଶ ቆݔ)ߩ, ℎ(ݕ ଶݐଶ߲ݑ߲ ቇ + ݁଴ଶ݈௜௡ଶ ߲ଶ߲ݕଶ ቆݔ)ߩ, ℎ(ݕ ଶݐଶ߲ݑ߲ ቇቍ ݕ݀ݔ݀ = 0, (7-a) 

 ඵ ߰௩(ݔ, (ݕ ቌ ݕ߲߲ ൭ݔ)ܧ, ℎ(1(ݕ − (ଶߥ ൬ߥ ݔ߲ݑ߲ + ൰൱ݕ߲ݒ߲ + ݔ߲߲ ൭ݔ)ܧ, ℎ2(1(ݕ + (ߥ ൬߲ݕ߲ݑ + ൰൱ݔ߲ݒ߲ − ,ݔ)ߩ ℎ(ݕ ଶ஺ݐଶ߲ݒ߲ + ݁଴ଶ݈௜௡ଶ ߲ଶ߲ݔଶ ቆݔ)ߩ, ℎ(ݕ ଶݐଶ߲ݒ߲ ቇ + ݁଴ଶ݈௜௡ଶ ߲ଶ߲ݕଶ ቆݔ)ߩ, ℎ(ݕ ଶݐଶ߲ݒ߲ ቇቍ ݕ݀ݔ݀ = 0, (7-b) 

where, ߰௨(ݔ, ,ݔ)and ߰௩ (ݕ  are the arbitrary weight functions. In this paper, we propose a (ݕ
nominal nanoplate by considering the following two conditions. Firstl, the nominal nanoplate is 

uniformly distributed, e.g. ܧℎതതതത = ாబ௛బ஺ ׭ ܧ ቀ௫௔ቁ ℎ ቀ௫௔ቁ ஺ݕ݀ݔ݀  and ߩℎതതതത = ఘబ௛బ஺ ׭ ߩ ቀ௫௔ቁ ℎ ቀ௫௔ቁ ஺ݕ݀ݔ݀  

where ܣ is the surface area of the plate. Secondly, the boundary conditions of the nominal 
nanoplate contain all the geometric boundary conditions of the non-uniform nanoplate.  

The weak form of the FIV for non-uniform nanoplate will be obtained by integrating Eqs. 7. As 
discussed, the weak form is applied to estimate the solution. To this end, series extensions are 
used to predict the in-plane displacement of the nanoplate ݔ)ݑ, ,ݕ ,ݔ)ݒ and (ݐ ,ݕ  :as follows (ݐ

,ݔ)ݑ  ,ݕ (ݐ = ,ݔ)ܷ (ݕ sin(߱ݐ) (8-a) 

,ݔ)ݒ  ,ݕ (ݐ = ,ݔ)ܸ (ݕ sin(߱ݐ) (8-b) 
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ℎതതതത1ܧ − ଶߥ ቆ߰௨ ฬ஺ݔ߲ܷ߲ − ඵ ߲߰௨߲ݔ ݔ߲ܷ߲ ஺ݕ݀ݔ݀ ቇ + ℎതതതത1ܧߥ − ଶߥ ቆ߰௨ ฬ஺ݕ߲ܸ߲ − ඵ ߲߰௨߲ݔ ஺ݕ߲ܸ߲ ቇݕ݀ݔ݀
+ ℎതതതത2(1ܧ + (ߥ ቆ߰௨ ฬ஺ݕ߲ܸ߲ − ඵ ߲߰௨߲ݔ ݕ߲ܸ߲ ஺ݕ݀ݔ݀ + ߰௨ ฬ஺ݕ߲ܷ߲ − ඵ ߲߰௨߲ݕ ݕ߲ܷ߲ ஺ݕ݀ݔ݀ ቇ
+ ℎതതതത߱ଶߩ ቈඵ ߰௨ܷ݀ݕ݀ݔ஺− ݁଴ଶ݈௜௡ଶ ቆ߰௨ ฬ஺ݔ߲ܷ߲ − ඵ ߲߰௨߲ݔ ݔ߲ܷ߲ ஺ݕ݀ݔ݀ + ߰௨ ฬ஺ݕ߲ܷ߲ − ඵ ߲߰௨߲ݕ ஺ݕ߲ܷ߲ ቇ቉ݕ݀ݔ݀ = 0, 

(9-a) 

 

ℎതതതത1ܧ − ଶߥ ቆ߰௩ ฬ஺ݕ߲ܸ߲ − ඵ ߲߰௩߲ݕ ݕ߲ܸ߲ ஺ݕ݀ݔ݀ ቇ + ℎതതതത1ܧߥ − ଶߥ ቆ߰௩ ฬ஺ݕ߲ܷ߲ − ඵ ߲߰௩߲ݔ ஺ݕ߲ܷ߲ ቇݕ݀ݔ݀
+ ℎതതതത2(1ܧ + (ߥ ቆ߰௩ ฬ஺ݕ߲ܷ߲ − ඵ ߲߰௩߲ݔ ݕ߲ܷ߲ ஺ݕ݀ݔ݀ + ߰௩ ฬ஺ݔ߲ܸ߲ − ඵ ߲߰௩߲ݔ ݔ߲ܸ߲ ஺ݕ݀ݔ݀ ቇ
+ ℎതതതത߱ଶߩ ቈඵ ߰௩ܸ݀ݕ݀ݔ஺− ݁଴ଶ݈௜௡ଶ ቆ߰௩ ฬ஺ݔ߲ܸ߲ − ඵ ߲߰௩߲ݔ ݔ߲ܸ߲ ஺ݕ݀ݔ݀ + ߰௩ ฬ஺ݕ߲ܸ߲ − ඵ ߲߰௩߲ݕ ஺ݕ߲ܸ߲ ቇ቉ݕ݀ݔ݀ = 0. 

(9-b) 

In order to obtain the maximum potential and kinetic energy which are necessary to study the 
non-uniform nanoplate based on the Ritz method, Eq. (9-a) and Eq. (9-b) are added together 
neglecting the weight functions for free geometric boundary conditions as shown in Eq. 10. 

 න න ℎതതതത߱ଶߩ ൤߰௩ܸ + ߰௨ܷ + ݁଴ଶ݈௜௡ଶ ൬߲߰௩߲ݔ ݔ߲ܸ߲ + ߲߰௩߲ݕ ݕ߲ܸ߲ + ߲߰௨߲ݔ ݔ߲ܷ߲ + ߲߰௨߲ݕ ൰൨ݕ߲ܷ߲ ௔ݕ݀ݔ݀
଴

௕
଴ = න න ℎതതതത1ܧ − ଶߥ ൤൬߲߰௩߲ݕ ݕ߲ܸ߲ + ߲߰௨߲ݔ ൰ݔ߲ܷ߲ + ߥ ൬߲߰௩߲ݔ ݕ߲ܷ߲ + ߲߰௨߲ݔ ൰௔ݕ߲ܸ߲

଴
௕

଴+ 1 − 2ߥ ൬߲߰௩߲ݔ ݕ߲ܷ߲ + ߲߰௩߲ݔ ݔ߲ܸ߲ + ߲߰௨߲ݔ ݕ߲ܸ߲ + ߲߰௨߲ݕ ൰൨ݕ߲ܷ߲  ݕ݀ݔ݀

(10) 

With the assumption that ߰௨(ݔ, (ݕ ≅ ,ݔ)ܷ  ,ݔ)and ߰௩ (ݕ (ݕ ≅ ,ݔ)ܸ   .Eq. 11 can be obtained ,(ݕ

 ߱ଶ න න ℎതതതതߩ ቈܸଶ + ܷଶ + ݁଴ଶ݈௜௡ଶ ቆ൬߲ܸ߲ݔ൰ଶ + ൬߲ܸ߲ݕ൰ଶ + ൬߲ܷ߲ݔ൰ଶ + ൬߲ܷ߲ݕ൰ଶቇ቉ ௔ݕ݀ݔ݀
଴

௕
଴ = න න ℎതതതത1ܧ − ଶߥ ቈ൬߲ܸ߲ݕ൰ଶ + ൬߲ܷ߲ݔ൰ଶ + ߥ2 ൬߲ܷ߲ݔ ൰ݕ߲ܸ߲ + 1 − 2ߥ ൬߲ܸ߲ݔ + ൰ଶ቉ݕ߲ܷ߲ ௔ݕ݀ݔ݀

଴
௕

଴  

(11) 

Due the fact that the Rayleigh-Quotient is expressed as ߱ଶ = ௎೘ೌೣ்∗ , Eq. 11 can be rewritten in 

terms of ܶ∗ = 2 ௠ܶ௔௫ and ܷ௠௔௫ denoting the reference kinetic energy and maximum potential 
energy of the system respectively. Therefore, the maximum potential and kinetic energies for the 
non-uniform nanoplate corresponding to the nonlocal theory can be written as follows: 

 ܷ௠௔௫  = 12 ඵ ℎതതതത(1ܧ − (ଶߥ ቈ൬߲ܷ߲ݔ൰ଶ + ൬߲ܸ߲ݕ൰ଶ + ߥ2 ൬߲ܷ߲ݔ ∙ ൰ݕ߲ܸ߲ + (1 − 2(ߥ ൬߲ܷ߲ݕ + ൰ଶ቉஺ݔ߲ܸ߲  (a-12) ,ݕ݀ݔ݀ 

 ௠ܶ௔௫  = 12 ඵ ℎതതതߩ ቈܷଶ + ܸଶ + ݁଴ଶ݈௜௡ଶ ቆ൬߲ܷ߲ݔ൰ଶ + ൬߲ܷ߲ݕ൰ଶ + ൬߲ܸ߲ݔ൰ଶ + ൬߲ܸ߲ݕ൰ଶቇ቉஺  (b-12) .ݕ݀ݔ݀
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These equations reduce to the maximum potential and kinetic energy of the local in-plane 
displacement model assuming ݁଴݈௜௡ = 0.  

The Rayleigh-Quotient is obtained by equating the maximum potential and kinetic energies as 
follows: 

 ߱ଶ = ׬ ׬ ℎതതതത(1ܧ − (ଶߥ ቈቀ߲ܷ߲ݔቁଶ + ൬߲ܸ߲ݕ൰ଶ + ߥ2 ൬߲ܷ߲ݔ ∙ ൰ݕ߲ܸ߲ + (1 − 2(ߥ ൬߲ܷ߲ݕ + ൰ଶ቉ݔ߲ܸ߲ ௔଴௕଴ݕ݀ݔ݀ ׬ ׬ ℎതതതߩ ቈܷଶ + ܸଶ + ݁଴ଶ݈௜௡ଶ ቆቀ߲ܷ߲ݔቁଶ + ൬߲ܷ߲ݕ൰ଶ + ቀ߲ܸ߲ݔቁଶ + ൬߲ܸ߲ݕ൰ଶቇ቉ ௔଴௕଴ݕ݀ݔ݀  (13) 

The following non-dimensional terms for nanoplate are introduced to have generality and ease. 

 

ܺ = ݔܽ      ,       ܻ =    , ݕܾ
ℎതതതതܧ = ଴ℎ଴ܧ න න ℎ(ܺ)ܻ݀ܺ݀ଵ(ܺ)ܧ

଴
ଵ

଴ ℎതതതതߩ     ,     = ଴ℎ଴ߩ න න ℎ(ܺ)ܻ݀ܺ݀ଵ(ܺ)ߩ
଴

ଵ
଴    (14) 

In this study, we assume that the parameters ߩ ,(ܺ)ܧ(ܺ) and ℎ(ܺ) denoting the Young’s 
modulus, density and thickness of the nanoplate vary with ܺ. The varying parameters of the 
nanoplate are introduced as: 

 ݉ = ℎߩ = ݉଴ߩ(ܺ)ℎ(ܺ) = ݉଴(1 + ܺߜ + ߸ܺଶ), 
(ܺ)ℎ(ܺ)ܧ (15) = (1 + ܺߢ + ߶ܺଶ), 

where, ߢ ,߸ ,ߜ and ߶ are the non-uniformity parameters and ݉଴ is the mass per unit cross-
sectional area of the nanoplate at ܺ = 0. The non-dimensional expression for the Rayleigh-
Quotient of the nanoplate is given by substituting Eqs. 14 and 15 into Eq. 13. This leads to: 

 
Λே஽ = ׬ ׬ (ܺ)ℎ(ܺ)ܧ ቈቀ߲ܷ߲ܺቁଶ + ܴଶ ቀ߲ܸ߲ܻቁଶ + ܴߥ2 ቀ߲ܷ߲ܺ ∙ ߲ܸ߲ܻቁ + (1 − 2(ߥ ቀ߲ܷ߲ܻ ܴ + ߲ܸ߲ܺቁଶ቉ଵ଴ ܻ݀ܺ݀ଵ଴׬ ׬ (ܺ)ℎ(ܺ)ߩ ൥ܷଶ + ܸଶ + ݁଴ଶ݈௜௡ଶܽଶ ൭ቀ߲ܷ߲ܺቁଶ + ቀ߲ܸ߲ܺቁଶ + ܴଶ ቆቀ߲ܸ߲ܻቁଶ + ቀ߲ܷ߲ܻቁଶቇ൱൩ଵ଴ଵ଴ ܻ݀ܺ݀ , 

(16) 

Λே஽ = ఘబ௛బఠమ௔మ஼భభబ , 

where Λே஽ is the non-dimensional frequency parameter of the nanoplate, ߩ଴ is the density at ܺ = ଵଵ଴ܥ ,0 = ாబ௛బଵିఔమ  is the extensional stiffness at ܺ = 0 and ܴ = ܽ/ܾ denotes the aspect ratio 

parameter. 

We follow the procedure proposed by (Behera and Chakraverty, 2014 [48]) to solve Eq. 16. The 
following two deflection functions are assumed: 

 ܷ(ܺ, ܻ) = ෍ ,ܺ)௜௨߶௜(ଵ)ܥ ܻ),ே
௜ୀଵ  

ܸ(ܺ, ܻ) = ෍ ,ܺ)௜௩߶௜(ଶ)ܥ ܻ)ே
௜ୀଵ . (17) 

In Eq. 17, ܥ௜௨ and ܥ௜௩ are the unknown coefficients, N denotes the order of approximation, and ߶௜(ଵ) and ߶௜(ଶ) are the orthonormal admissible shape functions obtained from the Gram-Schmidt 
process through the following steps: 
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 Γ௜ = ܺ௣(1 − ܺ)௤ܻ௥(1 − ܻ)௦Υ௜, Υ௜ = ሼ1, ܺ, ܻ, ܺଶ, ܻܺ, ܻଶ, ܺଷ, ܺଶܻ, ܻܺଶ, ܻଷ, … ሽ, 
(18)  ߶ଵ( ) = Γଵ    ,     ߶௜( ) = Γ௜ − ∑ Θ௜௞߶௞( )௜ିଵ௞ୀଵ , Θ௜௞ = )୻೔,థೖۃ )థೖۃۄ( ),థೖ(  ,ۄ(

where, ݎ ,ݍ ,݌ and ݏ represent the edge parameters controlling the boundary conditions at ܺ = 0, ܺ = 1, ܻ = 0 and ܻ = 1 respectively. Each of the edge parameter can be set to 0, 1 and 2 for 
free, simply supported and clamped edge conditions respectively. For two-dimensional 
problems, ܽۃ, ,ܺ)ܽ indicates the inner product of the two functions ۄܾ ܻ) and ܾ(ܺ, ܻ) defined as: 

,ܽۃ  ۄܾ = න න ܽ(ܺ, ܻ)ܾ(ܺ, ܻ)ܻ݀ܺ݀ଵ
଴

ଵ
଴ . (19) 

The norm of function ߶௜( )(ܺ, ܻ) is expressed using: 

 ฮ߶௜( )(ܺ, ܻ)ฮ = ඨන න ߶௜( )(ܺ, ܻ)ଶܻ݀ܺ݀ଵ
଴

ଵ
଴ , (20) 

and the normalized shape function, ߶ത௜( ), can be obtained as ߶ത௜( ) = థ೔( )ቛథ೔( )ቛ.   

Substituting Eq. 17 into Eq. 16 leads to a generalized eigenvalue problem: 

ሽܦሼ[ܭ]  = Λே஽[ܯ]ሼܦሽ, (21) 

where [ܯ] and [ܭ] are the mass and stiffness matrices and ሼܦሽ = ଶ௨ܥଵ௨ܥ] … ே௨ܥ ଶ௩ܥଵ௩ܥ …  ்[ே௩ܥ …
is the vector of unknowns. The stiffness and mass matrices can be written as:  

ܭ  = ൤ܭଵଵ ଶଵܭଵଶܭ  ଶଶ൨ଶே×ଶேܭ

ܯ = ൤ܯଵଵ ଶଵܯଵଶܯ  ଶଶ൨ଶே×ଶே. (22)ܯ

One can use the following set of equations to determine the components of stiffness and mass 
matrices. 

 

௜௝ଵଵܭ  = ׬ ׬ (ܺ)ܧ ቆడథ೔(భ)డ௑ ∙ డథೕ(భ)డ௑ + (ଵିఔ)ଶ ܴଶ డథ೔(భ)డ௒ ∙ డథೕ(భ)డ௒ ቇ ܻ݀ܺ݀ଵ଴ଵ଴ , 
௜௝ଵଶܭ = න න (ܺ)ܧ ൭ܴߥ ߲߶௜(ଵ)߲ܺ ∙ ߲߶௝(ଶ)߲ܻ + (1 − 2(ߥ ܴ ߲߶௜(ଵ)߲ܻ ∙ ߲߶௝(ଶ)߲ܺ ൱ ܻ݀ܺ݀,ଵ

଴
ଵ

଴  

௜௝ଶଵܭ = න න (ܺ)ܧ ൭ܴߥ ߲߶௜(ଶ)߲ܻ ∙ ߲߶௝(ଵ)߲ܺ + (1 − 2(ߥ ܴ ߲߶௜(ଶ)߲ܺ ∙ ߲߶௝(ଵ)߲ܻ ൱ଵ
଴

ଵ
଴ ܻ݀ܺ݀, 

௜௝ଶଶܭ = න න (ܺ)ܧ ൭ܴଶ ߲߶௜(ଶ)߲ܻ ∙ ߲߶௝(ଶ)߲ܻ + (1 − 2(ߥ ߲߶௜(ଶ)߲ܺ ∙ ߲߶௝(ଶ)߲ܺ ൱ ܻ݀ܺ݀ଵ
଴ ,ଵ

଴  

௜௝ଵଵܯ = න න (ܺ)ℎ(ܺ)ߩ ൥߶௜(ଵ)߶௝(ଵ) + ݁଴ଶ݈௜௡ଶܽଶ ൭߲߶௜(ଵ)߲ܺ ∙ ߲߶௝(ଵ)߲ܺ + ܴଶ ߲߶௜(ଵ)߲ܻ ∙ ߲߶௝(ଵ)߲ܻ ൱൩ ܻ݀ܺ݀ଵ
଴

ଵ
଴ ௜௝ଵଶܯ , = ௜௝ଶଵܯ = 0 

(23) 
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௜௝ଶଶܯ = න න (ܺ)ℎ(ܺ)ߩ ൥߶௜(ଶ)߶௝(ଶ) + ݁଴ଶ݈௜௡ଶܽଶ ൭߲߶௜(ଶ)߲ܺ ∙ ߲߶௝(ଶ)߲ܺ + ܴଶ ߲߶௜(ଶ)߲ܻ ∙ ߲߶௝(ଶ)߲ܻ ൱൩ ܻ݀ܺ݀ଵ
଴

ଵ
଴ . 

3. Numerical results and discussions 

In this section, the non-dimensional frequency parameters Λே஽  have been numerically computed 
by solving the generalized eigenvalue problem Eq. 21. For computer programming, MAPLE 
(version 18) is used. Here, the effects of small-scale parameter, non-uniformity parameters, 
aspect ratio and boundary conditions on the non-dimensional frequency parameter of non-
uniform nanoplate have been studied. It should be noted that, hereafter, the scripts F and S are 
used as to symbolize the Free and Simply supported conditions respectively.  

3.1. Validation  

For validation purpose, herein, we use an example that was investigated by (Murmu and 
Pradhan, 2009 [32]) using the method of direct separation variables. To this end, we consider a 

uniform nanoplate with mass density ߩ = 2250 K୥୫య, modulus of elasticity ܧ = 106 ܶܲܽ, 

thickness ℎ = 0.34 nm and Poisson’s ratio ߥ = 0.25. We take the two lengths of the nanoplate 
as 5 nm and 30 nm. The nonlocal scale coefficient is assumed to be ݁଴݈௜௡ = 0.5, 1 and 2.  

Table 1 reports the three non-dimensional frequency ratios ൬൫ஃಿವ൯೙೚೙೗೚೎ೌ೗(ஃಿವ)೗೚೎ೌ೗ ൰ of the square 

nanoplate considered above with simply-supported boundary conditions. From Table 1, it can be 
concluded that the non-dimensional frequency ratio decreases when the nonlocal scale 
coefficient increases. In addition, when the nonlocal scale coefficient is fixed to a constant value, 
the non-dimensional frequencies increase with increasing the length of the nanoplate. According 
to Table 1, the results obtained using the present approach agrees well with those reported in 
(Murmu and Pradhan, 2009 [32]). 

Table 1. Validation of the present result for uniform SSSS nanoplate in different modes 

 nm 
Mode 1 Mode 2 Mode 5 Mode 20 

Present Ref. [31] Present Ref. [31] Present Ref. [31] Present Ref. [31] ݁଴݈௜௡ = 0.5 
L=10 0.9624 0.9762 0.8800 0.9139 0.6352 0.6691 0.1857 0.2196 

L=30 0.9794 0.9973 0.9714 0.9892 0.9199 0.9378 0.5418 0.5596 ݁଴݈௜௡ = 1 
L=10 0.8800 0.9139 0.7137 0.7475 0.3766 0.4105 0.0780 0.1118 

L=30 0.9714 0.9892 0.9410 0.9588 0.7858 0.8037 0.3020 0.3199 ݁଴݈௜௡ = 2 
L=10 0.7137 0.8475 0.4565 0.4904 0.1857 0.2196 0.0223 0.0562 

L=30 0.9410 0.9588 0.8425 0.8604 0.5418 0.5596 0.1486 0.1665 

3.2. Convergence study 

The convergence study should be carried out in order to determine the necessary degree of the 
polynomial set, N, for acceptable results. Figures 2-5 show the convergence of the first three 



S. Faroughi et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(1) 1-20 (2016) 

10 
 

frequency parameters (Ω = √Λே஽) for SSSS, FFFF, SFSF and SSFF nanoplates with aspect ratio ܴ = 2 and non-uniformity parameters ߜ = ߢ = ߸ = ߶ = 0.1 respectively. Here, the nonlocal 
parameter ߛ = (݁଴݈௜௡)ଶ is considered as ߛ = 1 nmଶ to examine the convergence of results. For a 
specific material, the corresponding nonlocal parameter ߛ can be estimated by fitting the results 
of atomic lattice dynamics or experiment. According to Figs. 2-5, one concludes that the 
frequency parameters approach to the solutions when the number of terms is taken as N=20.  

 
Fig. 2. Convergence of first three frequency parameters 

for SSSS boundary conditions 
Fig. 3. Convergence of first three frequency parameters 

for FFFF boundary conditions 

 
Fig. 4. Convergence of first three frequency parameters 

for SFSF boundary conditions 

 
Fig. 5. Convergence of first three frequency parameters 

for SSFF boundary conditions 
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3.3. Effect of non-local parameter 

The effect of the nonlocal parameter on the frequency parameter is explored in this section. 
Figure 6 illustrates the variation of the first seven frequency parameters with respect to the 
nonlocal parameter for FFFF nanoplates with ܽ = 20 nm and ܴ = 5. The nonlocal parameter is 
taken as 0 nmଶ, 0.5 nmଶ, 1 nmଶ, 1.5 nmଶ, 2 nmଶ, 2.5 nmଶ, 3 nmଶ, 3.5 nmଶ, 4 nmଶ, 4.5 nmଶ 
and 5 nmଶ. From Fig. 6, it can be seen that the frequency parameter decreases when the nonlocal 
parameter increases especially at higher modes. Consequently, increasing the nonlocal parameter 
leads to a reduction in the stiffness of the nanoplate. 

 
Fig. 6. Variation of the first seven frequency parameters with the nonlocal parameter 

Figure 7 demonstrates variation of the first frequency parameter with length for FFFF nanoplates 
with aspect ratio ܴ = 4 5⁄  and non-uniformities ߶ = 0.1, ߸ = ߜ ,0.2 = 0.3 and ߢ = 0.4. Here, 
the nonlocal parameter varies between 0 to 2 nmଶ. According to Fig. 7, one can conclude that in 
a fixed length of nanoplate, the first frequency parameter decreases as the nonlocal parameter 
increases. Additionally, in a fixed nonlocal parameter, increasing the length of the nanoplate 

Fig. 7. Variation of the fundamental frequency parameter with length ܽ for different values of ߛ 
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causes an increase in the frequency parameter. With this, it becomes clear that in a nanoplate 
with larger length, the effect of the nonlocal parameter reduces. As a results, as shown in Fig. 7, 
when the length of a nanoplate is approximately larger than 40 nm, for all nonlocal parameters, 
the frequency parameter approaches to the local frequency (ߛ = 0).  

3.4. Effect of non-uniformity parameters 

In this part, the effects of non-uniformity parameters on the frequency parameters have been 
investigated. To this end, first we assume that the mass per unit area and Young’s modulus vary 
quadratically and linearly respectively with ߶ = 0 and ߜ = 0. For this example, we take ߛ = 1 nmଶ, ܽ = 5 nm and ܴ = 1 for the frequency parameters, and ߸  varies from 0.1 to 0.9 
with the SFSF edge boundary  condition. Figure 8 represents the variation of the first four 
frequency parameters as functions of ߸ assuming ߢ = 0.5. It can be concluded from Fig. 8 that 
the frequency parameters decrease by increasing ߸ because Λே஽ is inversely proportional to ߸ 
as stated in Eq. 16. 

 
Fig. 8. Variation of the first four frequency parameters with ϖ 

Variation of the frequency parameter as function of ߢ is also investigated and the results are 
illustrated in Fig. 9. The results are provided assuming that ߛ = 1 nmଶ, ܽ = 5 nm and ܴ = 2 
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with the SFSF boundary condition taking ߸ = 0.5. It is noticed that increasing ߢ leads to a slight 
increase in frequency parameters. This behavior was expected; because Λே஽ is relatively 
proportional to ߢ (see Eq. 16).  

Next, we study the effects of non-uniformity parameters on the frequency parameter, when 
Young’s modulus and mass per unit area of the nanoplate vary quadratically by taking ߸ = 0.2  
and changing ߶ from 0.1 to 0.9. The variation of frequency parameters for this problem 
assuming the SSSF boundary condition is demonstrated in Fig. 10. Results are determined for ߛ = 2 ݊݉ଶ, ܽ = 10 ݊݉ and ܴ = 1. Results show that frequency parameters increase by 
increasing ߶.  

 
Fig. 10. Variation of the first four frequency parameters with ϕ 

Figure 11 represents the alteration of frequency parameters with ߸ taking ߮ = 0.2. These 
frequency parameters are obtained for SSSF boundary condition considering ߛ = 2 nmଶ, ܽ = 10 nm and ܴ = 1. Results illustrated in Fig. 11 show a reduction in frequency parameters as ߸ increases. 

 

 
Fig. 11. Variation of the first four frequency parameters with ϖ 
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In the last attempt, we investigate the effects of non-uniformity parameter on frequency 
parameters for the case where Young’s modulus varies quadratically and the mass per unit area 
varies linearly. This case study can be obtained by taking ߢ = 0 and ߸ = 0. The variations of the 
first four frequency parameters with ߜ is demonstrated in Fig. 12 for the case of SSSF for 
boundary condition taking ߮ = 0.2. These solutions again are provided for ߛ = 2 nmଶ, ܽ =10 nm and ܴ = 1. According to Fig. 12, one can conclude that frequency parameters decrease 
with increase in ߜ. 

 
Fig. 12. Variation of the first four frequency parameters with δ 
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directly represents the length of the nanoplate (see section 2), i.e. increasing the aspect ratio is 
equivalent to increasing the length of the nanoplate. Furthermore, at a fixed aspect ratio, by 
increasing the nonlocal parameter, the fundamental frequency is decreased which implies that the 
nonlocal effects should be taken into consideration in FIV of nanoplates at high aspect ratios. 

 

3.6. Effect of boundary conditions 

In this subsection, the influence of boundary conditions on the frequency parameter is 
investigated. Proper information about the effect of boundary conditions on frequency parameter 
is necessary to better design nano-structures. The variation of the fundamental frequency 
parameter with small-scale effect is shown in Fig. 14 for all combinations of boundary 
conditions with ܽ = 10 nm, ߢ = ߜ ,0.4 = 0.3, ߶ = 0.2, ߸ = 0.1 and ܴ = 1. As shown in Fig. 
14, the fundamental frequency parameter decreases with increase in nonlocal parameter which 
varies between 0 to 2 nm. It is also detected from Fig. 14 that SSSS and SFFF nanoplates 
possess the highest and lowest frequency parameters respectively. Additionally, increasing the 
small-scale effect has a maximum and minimum effect on the fundamental frequency parameter 
when the boundary conditions of nanoplate are SSSS and SFFF respectively. 

 

 

 
Fig. 14. Variation of the fundamental frequency parameter with the nonlocal scale coefficient for 

different boundary conditions 
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aim, the second, sixth and twelfth mode shapes of a SFSF nanoplate is provided for different 
values of ݁଴݈௜௡ varying from zero to three and non-uniform parameters are selected such that ߢ = ߜ ,0.4 = 0.3, ߶ = 0.2, ߸ = 0.1, ܽ = 5 nm and ܴ = 1. The results are shown in Fig. 15 that 
shows mode shapes are influenced by scaling effect parameter. The non-local continuum model 
has an atomistic view in which the atoms are connected by elastic springs, while for the local 
(classic) continuum model, the spring constants have infinitive values. In a specific mode, when 
the scale coefficient ݁଴݈௜௡ increases from zero to three, the stiffness of the system decreases, the 
system becomes softer with lower frequency and behaves like a new discrete lumped mass-
spring system. Therefore, for the new system, a new qualitative dynamical behavior is expected 
and a new set of small-waves appears in the mode-shapes due to considering the interatomic 
spacing in the analysis that leads to atoms fluctuations during wave propagation phenomenon. 
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Fig. 15. 2nd, 6th and 12th mode-shapes of a non-uniform SFSF nanoplate with different values 

of nonlocal scale coefficient 
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4. Conclusions 

In this paper, the effect of non-uniformity parameters on in-plane frequency parameters of 
nanoplates is studied using a numerically efficient method. This method employs the boundary 
characteristic orthogonal polynomials produced using the Gram–Schmidt process and is based on 
the Ritz method. The non-uniformity of the nanoplates is applied assuming linear and quadratic 
variations of Young’s modulus and density. A convergence study is carried out for a specific set 
of parameters to show the accuracy of the present method. The obtained solutions have been 
tested against the existing results for simply supported edge conditions and satisfactory 
agreement was observed. We provided a comprehensive study of the effect of non-uniform 
parameter, nonlocal parameter, small-scale, aspect ratio and boundary conditions on the in-plane 
frequency parameters. The main obtained results from this work can be itemized as:  

Frequency parameters decrease by increasing the nonlocal parameter in all the vibration modes. 

Frequency parameters decrease by increasing ߸  and ߜ, and increase by increasing ߶ and ߢ.  

Frequency parameters increase by increasing the aspect ratio for different values of nonlocal 
parameters.  

The small-scale effect has more influence on frequency parameters at higher values of aspect 
ratio.  

Finally, mode shapes are considerably affected by scaling effect parameters.  

From these results, the importance of the nonlocal elasticity theory is highlighted. The nonlocal 
elasticity must be taken into consideration for the FIV of nanoplates because the classical (local) 
plate model generally overestimates the in-plane frequency.  
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