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In this paper, the effect of normal impact on the mathematical
modeling of flexible multiple links is investigated. The response of
such a system can be fully determined by two distinct solution
procedures. Highly nonlinear differential equations are exploited to
model the falling phase of the system prior to normal impact; and
algebraic equations are used to model the normal collision of this
open-chain robotic system. To avoid employing the Lagrangian
method which suffers from too many differentiations, the governing
equations of such complicated system are acquired via the Gibbs-
Appel (G-A) methodology. The main contribution of the present
work is the use of an automatic algorithm according to 3x3 rotational
matrices to obtain the system’s motion equations more efficiently.
Accordingly, all mathematical formulations are completed by the use
of 3x3 matrices and 3x1 vectors only. The dynamic responses of this
system are greatly reliant on the step sizes. Therefore, as well as
solving the obtained differential equations by using several ODE
solvers, a computer program according to the Runge-Kutta method
was aso developed. Finadly, the computational counts of both
algorithms i.e., 3x3 rotational matrices and 4x4 transformation
matrices are compared to prove the efficiency of the former in

deriving the mation equations.
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1. Introduction

When a mechanical system is subjected to applied impulses or the constraints on the system are
abruptly varied, the velocity of the components in the system changes so rapidly that the duration
of the process may be considered to be instantaneous. The mathematical modeling of ground
collision in open chain robotic systems constructed of flexible links has diverse applications. For
example, in the dynamic modeling of biped robotic systems, it is essential to know the dynamic
responses of the system at the impact moments. In fact, the viscoelastic properties of human
muscles that cover the bones justify the use of flexible links to model the bipedal robotic
systems.

Unlike the classical problem of collision between two objects, a small amount of literature exists
about the impact phenomenon in robotic systems. In an early study of this subject, Wittenburg
[1] employed the Newton-Euler's methodology to obtain the governing equations at impact
moments. Chang and Peng [2] exploited the Kane's formulation to investigate the impulsive
motion in robotic systems by considering four various kinds of impulsive constraints.
Mathematical modeling of frictional impacts in robotic manipulators have been studied by
Hurmuzlu and Marghitu [3]. They developed three dynamical models for the coefficient of
restitution according to the Newton’s model of restitution. Rodriguez and Bowling [4] presented
multi-point models of impact in rigid body systems. In this work, the effect of friction was also
considered. The dynamic behavior of robotic manipulators with flexible joints colliding with
their confining walls has been studied by Mahmoodi et a. [5]. In their paper, an adaptive
controller is suggested to accomplish trajectory tracking of this robotic system. Shafei and Shafel
[6] studied the effects of impact in open-chain robotic systems with flexible links. To simulate
the conditions under which a single flexible link strikes with multiple flat confining walls, they
employed the Newton's impact law. However, the chief objective of all the aforementioned
studies has been to better the modeling of impact in robotic manipulators with finite numbers of
rigid or flexible links;, and robotic systems with many degrees of freedom have not been
considered.

The two most important problems in the kinematic modeling of flexible robotic arms with impact
phenomenon are: 1) How to model the impact moment between a flexible manipulator and the
ground? and 2) How to capture an object by a flexible robotic arm with the least mechanical
vibrations? Both of these impulsive events have involved many researchers [7-12]. The
derivation of motion equations of elastic robotic arms, which encompass both aforementioned
types of impulsive constraints, can be found in the works of Khulief and Shabana [13]. In this
study, The FEM is utilized to model the elastic properties of the links for which the assumptions
of Timoshenko Beam Theory (TBT) hold. A mathematical model was proposed by Yigit et al.
[14] to study the dynamic responses of a rotating flexible beam with impact. Another model
based on the Hertzian contact law, was proposed by the same authors for impact modeling [15].
However, because of system complexity, only one of the links was assumed to be flexible. Also,
one may refer to the work of Chapnik et al. [16] in which the motion of a single flexible beam
under impact loading was simulated by evaluating the proper initial conditions. Then, the
obtained results from the computer simulation were compared to the measured data from the
experimental setup. For more studies, one may refer to [17] where a literature review about
impact in the dynamics of flexible robotic systems has been performed by Khulief.
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The two chief questions in multi-flexible-link robotic manipulators with impulsive constraints
are: 1) How to construct a valid elasto-dynamic model with the acceptable computational counts,
and 2) How to incorporate the algebraic equations of this multi-flexible-link robotic arm into the
relevant differential equations. In most of mechanical systems, it is essential to model the system
as precise as possible. When more bodies are employed in dynamic modeling a robotic system,
the mathematical operations needed to obtain the motion equations grow rapidly. Therefore, it is
crucial to exploit an automatic algorithm to derive the motion equations, as fast as possible.
There are many formulations that are effective in deriving the governing equations of open-chain
robotic systems [18-24]. A comprehensive literature survey of the different recursive algorithms
for elastic robotic manipulators may be found in [25]. Nevertheless, the stress of this paper is on
the Gibbs-Appell formulation which has been used the least among the other method. Recently,
Korayem and Shafel effectively applied this methodology for systematic formulation of flexible
robotic arms [26-28], mobile robotic manipulators [29-31] and manipulators with revolute-
telescopic joints [32, 33]. However, in none of these works the effects of impact between a
manipulator and the ground have been considered.

The governing motion equations of robotic arms consisting of the unilateral constraints have
formerly been fully formulated. The finite and impulsive motions of robotic arms with impacts
can be characterized by differential and algebraic equations, respectively. However, the
implementation of these differential-algebraic equations is restricted by significant
computational load especialy when the number of shape functions used to model the elastic
properties of the flexible links increases. Consequently, researchers have concentrated to better
the algorithms in order to simulate more complicated robotic systems with impact phenomenon.
Forg et al. [34] suggested an agorithm for robotic systems with several constraints to treat many
impacts. An O(n) recursive algorithm according to the Projection Equation was offered by

Gattringer et al. [35]. By using the Dirac delta functions, Tlalolini et a. [36] modeled the
external forces originating from the collision of athirteen-link humanoid robotic system with the
ground. They exerted a Newton-Euler formulation in recursive form to extend an optimization
algorithm for specifying the optimal cyclic gaits of the robot. Also, in the work of Shafel and
Shafei [37], the mathematical model of multi-flexible-links subjected to impact was extracted in
a symbolic format by employing the Gibbs-Appell formulation and 4x4 transformation matrices.
However, despite using compact formulas in their work, the developed algorithm had a high
computational complexity. Anyway, in all of the above-mentioned studies, the results of the
impact model that should be exploited to characterize the generalized velocities of the system
after impact moment, have not been formulated by an efficient algorithm with the least number
of mathematical operations.

The focus of this paper is about symbolic derivation of multi-flexible-link robotic arms in finite
and impulsive motions. So, this paper is formed as follows: Section 2 explains the kinematics of
the system under study. The dynamics of the system, containing the construction of its global
inertia matrix and global RHS vector in the flight phase and also the construction of the Jacobian
matrix in the impact phase are presented in Section 3. The results of two computer simulations
are presented in Section 4 to prove the efficiency of the proposed algorithm. Finally, the
concluding remarks are summarized in Section 5 and the merits of the proposed method are
highlighted.
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2. Kinematics of a falling down multi-flexible link

2.1. System specifications

This section presents the kinematics of a planar robotic arm which constructed by flexible links
and floated through the space. Link (i —1) and Link (i) of this robotic system are depicted in
Fig. 1. Two moving frames (x; ,x, ,x; 5, X, X, ,X, ;) are assigned to each elastic link according to the

forthcoming rules. x,,x, ,x, ; isthe moving frame for the i ™ link that its origin is located at the
start of this body; the x,, axisisaong the link when it is undeformed and the x, ; axisis aligned
the joint axis. On the other hand, the origin of X, ,x, ,x, ; moving frame is situated to the end of
this link and its orientation is precisely the same as the x, ,x, ,x, ; moving frame, when this link

has no deformation. Finaly, "/ X,"? X,"/ X, is the coordinate system which is devoted to the

ground, as the global reference frame. In this paper, it is supposed that the manipulator has a
moving base and consequently can easily move. So, the position and velocity of O, with respect

to the inertia reference frame are respectively denoted by X, and Xj, where j=12. It is
emphasized, the elastic attributes of the flexible links (i.e., modulus of elasticity £, and modulus
of rigidity G,), mass per unit length () and mass moment of inertia per unit length (J) are
assumed to be isotopic along the links. Here, the elastic property of each link is modeled with the

same number of shape functions (m). So, the degree of freedom (D.O.F) for the system is:
DOF =n+nm+2 where n D.O.F are related to the joint angles (g, ), nm D.O.F of the system

are related to the small deflections of the links (6, ) and the remaining two D.O.F are associated
with the position of the start point (O,) with respect to the global coordinate system (X, ).

2.2. Kinematic equations

In Fig. 1, a differential element, O, is demonstrated. The location of this differential element
with respect to the x, ,x; ,x, ; moving frame can be represented as,

irQ/O,. =, X1t Z:n:lay (t)rij (77)
—— %/—/

Rigid Elastic

@

where 'x,,={L 0 0} and 7, is the distance between points O and O, when this link is
assumed to be rigid. Also, r, = {xuj Xy Xgy }T is the eigen function vector which consists of

longitudinal and bending mode shapes ( x,; , x,, and x,, ). Furthermore, the rotation of O can be
expressed by assumed mode method (AMM) as,
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Fig. 1. A falling down multi-flexible links
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where ¢, = {9x1i,- 0., 0., }T is the eigen function vector which includes rotational shape
functions (¢, ,, 6, , and ¢, ) inprincipleaxes (0,x,,, 0,x,, ad O.x, ).

As the approach proposed in this paper is according to the G-A methodology, the absolute
acceleration of Q isneeded. Thisterm can be expressed as,

Qe i i i i i i i i i
=T, +'Tp0 T2 00X T + 0 X1y, + O, x( ;¥ rQ/Q) 3)

where ii‘o is the acceleration of the /" joint and ‘o, is the angular velocity of the /™ link. Also,

rQ/O and ' Iy Can be obtained by once and twice differentiating of Eq. (1), respectively. In

following section, Eq. (3) will be employed to establish the Gibbs function (acceleration energy)
of the system.

3. Dynamics of a falling down multi-flexible link

In this section, two dynamical models, namely, flying phase and impact phase are developed to
study the dynamic behavior of multi-flexible-link robotic systems. The finite motion of the
above-mentioned robotic system during the flying phase will be obtained by differentia
equations, while the impulsive motion due to the collision of this mechanical system with the
ground will be formulated by algebraic equations. In below, the details of these two phases are
described.

3.1. Dynamics of the system in the flying phase

In the flying phase, the manipulator is suspended through the space and has no contact with the
ground [38]. In this paper, differential equations for the flying phase are attained by the G-A
formulation, in which the acceleration energy and potential energy of each elastic link are
calculated first, and then theses partial terms are added together for all flexible links to provide
the Gibbs function (.S') and the potential energy (7 ) of the whole system. Here, it should be
noted that all dynamical methods lead to the same motion equations. However, the approach
suggested in this study is based on the G-A formulation which involves with less computational
counts.

3.1.1. Gibbs function of the whole system

The Acceleration energy of a serial robotic manipulator which consists of » flexible links with
lengths /; can be presented as,

l 1 . 1i . ’ j .
S= ZI [ H; 77; I' rQ)+§ (’)iT'Ji(ni)mi:ldﬂi 4
where ', isthe skew symmetric tensor associated with vector ‘o,. By introducing Eqg. (3) into

Eq. (4) one may obtain:
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S:Z;Bol’rg’ro T, By, —21, - B, 0¥ - By &,~'F, 0,8, o,
i=1
+%B4i _zimiT'iBSi"'id)iT'iBei_imiT 'B7iimi +2id)iT 'B&'imi ©®)
+1 " (B, + By, Y0, +' @ @B, o, +irrelevant terms
where
/ . m_. m _
By = | w(n)dn B, =) 6,(c)Cy B, =Y 3,(1)C,
Jj=1 Jj=1
By =Gy + Z t)cl B, = Z z 5;/ (t)ézk (t)CBijk ‘B, = S, (t)5zk (Z)Cm;;
J=1 J=1 k=1 Jj=1 k=1
(6-16)
iBGi = Z 51/ (t)a‘zj B, = z 5;/ (t)ﬂij By, = 5{/ (t)ﬁij
Jj=1 Jj=1 j=1
;
=C + Z (CGTU + ,3 ) Blo[ = jo J;(T])dT]

In the G-A method, the governing equations are derived by differentiating the acceleration
energy with respect to quasi-accelerations (linear combination of generalized accelerations).

Thus, it is not necessary to evaluate those terms in Gibbs function that do not encompass ¢, , J,,

and X ; as quasi-accelerations. As observed in Eq. (5), al these terms are named as "irrelevant

terms’. Also al the variables appearing in Egs. (6-16), including the integrations of mode shape
products can be expressed as.

Cy, = [ 1(n)r, (7)dn Cy = [ )0,
Cope = [} 10! (1) v, ()l Ca = [ 1 (0)7 () ()
Cyo = [} m(n)n*' 3%, o = [ )% (n)dn (17-26)
Cy, = [ 1), ,x, () Cope = [ )7 ()7, ()l
=Cpy+ 2 8, (1)Cyy By =Co+ . 5,(t)Coy
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As mentioned above, one should evaluate the derivatives of acceleration energy with respect to
guasi-accelerations. So, we get:

Differentiation with respect to g,
T

a_q/ Zz j+1 aq] (BOI rO + Bli - ZBZiimj _B3i[mi_i5i33iiwj)

. 0'® P i~ ;
+Zt—j 6‘1, (B?” r0+ B i + 2By (D +(B9z +BlOl) O, +'o,By (’01‘) @0

j=1l..n

Differentiation with respect to 5 ,

T

Yl Zz J+l 85 (BOz r0 + B ZBziimi _B3ii(i)i_i5iB3ii(Di)

n 0' 0, i i i P i~ i )
+ Z +'(B3,' I, + B, + 2B o, + (Bgi + BlOi) O, +' o8B, ‘o,

i=j+1 85
(28)
+>" 0 o "5 “o"- .0 +F -C .+ o -a
k=1 Jk 3Jfk k=1 Jk 4 jfk J VA J 0; Lif J VA
j=1l..n
f=1..m
Differentiation with respect to X ;
n 81 . . .- .
Ay 2—1 8X (BOI r +B ZBZilmi_B3ild)i_la)iB3ilmi)
(29)

j=1..2

3.2.1. Potential energy of a falling down multi-flexible-link system

The potential energy of a falling down n-flexible-link robotic manipulator arises from two
sources. 1) Gravity and 2) Strain energy. The effect of gravity can be considered by assuming
that the origin of the global coordinate system has an acceleration of 1g to the top. However, to

obtain the strain energy, one may refer to [32] where this function has been evaluated as,
1 n m m
= E Zzl Z =1 dodk=1 61‘/‘ (t )511( (t )Kijk (30)
in which
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06 00 .. 00 00 _. 00_. Ox,.. Ox,.
Ky=] { 1, s Dy Doa Doy Deg Doy O G }d’? (31)
on oy Z on oy * on oy on on

where I ; (j=1,2,3) are the area moments of inertia about the principle axes (O,x;,,0.x;, and

0., 5). I\/Iotlon equations of the aforementioned robotic arm will be completed by taking the
derivatives of potential energy with respect to the quasi-coordinates. So, we get:

Differentiation with respect to g,

ov, '
&q =0 j=1l..n (32)
J
Differentiation with respect to 5"”.
aVe m
a5 = k:]_éjk(t)Kjk/' j=l...n f=1l..m (33)
i

Differentiation with respect to X ;

o,
oX,

J

=0 j=1..2 (34)

3.1.2. Inverse dynamic equations of a falling down n-flexible-link robotic arm

Here, it is assumed there are no torque on the joints and no load on the links. With this
proposition, the motion equations of the above-mentioned robotic system, in the flying phase,
can be obtained as follows:

The rotational motion equations of the joins

—=0 j=l..n (35)

The vibrational motion equations of the links

as o, o £t
— = J=4.... n, =41...m (36)
00y 0oy

The translational motion equations of O,

[\

ox, J (37
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For the computer simulation of the aforementioned robotic system, the inverse dynamic form of
the motion equations (Egs. (35-37)) should be transformed to the direct dynamic form. The
details are presented in the following section.

3.2. Direct dynamics of a falling down flexible multiple links
In this section, Egs. (35-37) are converted to the following direct dynamics form:

1,(0)6=Rd0,0) (38)

where [ f(G)) is the inertia matrix of this n-elastic-link robotic system in the flying phase. Also
& and Re(®,0) can be represented as

GZ{% Oy = O, Gy Opn o Op o G, Oy o 0, X Xz} (39)

Re(0,0)={Re

9

Re, Re, .. Re, Re, Re, }T

n

Re,, .. Re;, Re ~Re; .. Re;

(40)

In continue, the derivatives of ' I, and ‘@, with respect to ¢,, 6, and X , appearing in Egs.
(27-29) should be computed. These two terms in summation form can be written as:

ies

o, =Ty, +'Ty, (41)
i - [ i-
0=0,1t+0, (42)

where 'f, and '@, denote those parts of ‘i, and ‘@, that encompass the generalized
accelerations; while ‘¥, and ‘@, represent those parts of ', and ‘@, that do not include 4, ,

5, and X, as generalized accelerations. These four terms can be presented as,

2 Ly i1 ; . .
lro.v,[ = Zj:l IR”efnf Xin + Z;:l le (k rO/c+l/Ok +k (stk Xk r0k+l/0k ) (43)
iir'o\,y, :iRref " X,g+ Zlkjl iRk (kmk X (Zk l..O,Hl/O,( +k(’)kxk Yo,.10, )'Fk(bv,kxk Yo,.10, ) (44)
io.‘)s,i = leliRkak,sqk +Z::lliRkkék(lk) (45)
i 1y (k= kg i k+1 . =Ly (& kg
0, = Zk:1 Rk( @+ 0k(lk ))>< Ry Xi139kn +Zk:1 Rk( ;X Bk(lk )) (46)

where ‘r, , =1* xk’1+27:15,g.(t)r,q.(lk), “¥,, 10, and ‘¥, ;. areobtained by differentiating of
“ry, o, - Moreover, “8,(Z,) and “8,(/,) can be attained by time differentiations of Eq. (2).
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Also, “X,={1 0 0}, “X,={0 1 o}, “X,;={0 0 1 and *x,,={0 0O 1.
Finally, ‘R, is a rotation matrix that indicates the orientation of the x, ,x, ,x, , moving frame
with respect to the x, ,x, ,x, , one. For more details about ‘R, one may refer to [30]. Now, the

derivatives of "i‘oi and ‘&, with respectto ¢, 5_,_, and Xj can be written as,

0%, da,

g, N owo A =R (47-48)
a’r . ; ; al(!) N
a4, =Riry R ()X X0, @ R®, () (49-50)
ot,
& R X, (51)

J

3.2.1. Building the global inertia matrix and the global RHS vector

To establish the inertia matrix for this multi-flexible-link system in the flying phase, it is
necessary to introduce Egs. (43-46) and aso Egs. (47-51) into Egs. (35-37). Then, al the

expressions that contain generalized accelerations, i.e, ¢, 5jf and X ;» should be kept on the

left hand side (LHS) and all the remaining expressions should be taken to the RHS. By arranging
the LHS expressions in a matrix format, the inertia matrix for this robotic system will be
attained. The details of this procedure are explained below.

Generalized accelerations in the rotational differential equations: 1n EQ. (35), the expressions
that encompass ¢, , J,, and X, can be represented as,

n n—1
il J / r J j T J
z X3 Oy Xk3+Z X;3" Vi Xk3+z U X, 3 |9k
k=1
2 3
n=1 m n=1 m n=1 m n=1 m
JxT J Ixt J joT
22X, 0k+9kz+ZZ g W 0+ DD X G+ 20 X v
k=1 t=1 k=1 t=1 f k=1 t=1 %f—/ k=1 t=1 %/_/
0]
n—-2 m n_m
j T J J<T S JvT J
+ Z X3 U 0, + ZZ X3 70,10, RC1k1+ZZ X; Rkakt ke
k=1 t=1 %r—’ k=j+1 t=1 k=j t=1 %r—’
9 10
n+2 n+2
il J ref il J ref %
+ Z X.iy3 ref Xk -n + Z /3 7/ref Xk—n Xk—n
k=n+1 k=n+1

1 12
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k=1 k=2 k=n k=n+l| k=n+2
611 51,” 621 | . 52»1

j =1 ql 4+5+6+7+8+9+10

j =2 éjz 4+5+6+7+8+10

J=n q,

Fig. 2. Inertia matrix of the rotational motion equationsin the flight phase

where ‘o, 'y, U, Yo Ty UL YL Ty, TEL and Ty, are presented in Appendix.
The constituent terms of Exp. (I), numbered from (1) to (12), form the inertia matrix of the
rotational differential equations that illustrated in Fig. 2.

Coriolis and centrifugal forces in the rotational differential equations: In Eq. (35), if al the
expressions that do not encompass generalized accelerations (G, , & ., and X,) aretransferred to
the RHS, one may obtain:

0 1 < 1 l
Z_ S+ Z_ T’ (52)

i=j+1 i=j aqj
13 14
where
'S, =By, —2B,'®,~B;'0, ~0,B;'o, (53)
'T, = B3iiizov,. +2B;' o, +(B9i + By, )id)v,i-i_ia—;iBQiimi (54)

The constituent terms of Eq. (52), numbered (13) and (14), construct the RHS vector of the
rotational differential equations that depicted in Fig. 3.

Generalized accelerations in the vibrational differential equations: In Eqg. (36), al the
expressions that encompass generalized accelerations (§,, 6, and X, ) as their coefficients can
be represented as,

Fig. 3. Right hand side of the rotational motion equations for the flight phase
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n n n-1 n
T j* k= T j* k T j* k T j5" ek
Zejf' O xk,3+z_0jf’ Vi Xk,s"'z_ejf‘ U, Xk,3+z_rjf' T

k=1

k= k=1 =
15 16 17 18

m

n-1 J
T j k T j k T j k .. T j
+E -1,V xk3+2 -Cy W Xk,3+2ajf'Rk X, 3 |G, T E EG .0,
k:l%r—’ %z—/ k=] ——— %,_J
2

k=1 t=1
20 1
n-1 m r n-2 m . n-2 m n-1 m
_al J' _ gt Tj"
+2. 270, v 0,42 > -0, U0, + kt+ZZ e’ .05
k=1 t=1 k=1 t=1 k=1 t=1 %/—/ k=1 t=1 %f—’
23 24 25
Jj-2 m J-1 m m n-1 m
—_ct J T j Tt
+2.2,-Cl, W0, +> > 0l /R ﬂkﬁZCsjﬁ +ZZB BRI FEi-Ae (1)
k=1 1=1 k=1 1=1 %r—/ =1 k=11 %/—/ k=1 =1 ——————
27 29 31
n-1 m
J J T j J
2N kaZC R, + Y Zr R Cw > 300710, RCa
k=1 t=1 \—r——‘ k=1 t=1 " k=j+lt=l >  [=j+2t=1 3’5
n m n+2 . ; n+2
j rej T j ref
+ ejf Ria,, 5kt+ Zr 2“ Xt ZO Ve X
k=j+1 t=1 ——— k= n+1%f—/ k=n+1
36 37 38
n+2 " n+2
T j* re T j ref %
+ Z ejf' gre.‘f kan + Z Cljf' Rre:f Xk—n kan
k=n+1 % k=n+1 20

The constituent terms of Exp. (I1), numbered from (15) to (40), establish the inertia matrix of the
vibrational differential equationsasillustrated in Fig. 4.

I(@) k=1 k=2 k=n k=n+1| k=n+2
G| S| [ ald.| |4 |ald.] [3.
Sy o 15
. +16 15
. ‘ +17 | 22+23+24+25+26 22+23+24+25+26
J=1 +18 | 29430431432 | T17 | +30+31432+34+36 200 S
T e +18 +18
51m +21 +19
oy | 18 15
+16
. iy 22+23+24+25+26 :1? 22+23+24+25+26 15
j=2 | 115 | 28+30+31432433 | +18 | 20+30+31+32 5| .
0. +19
2m :;(1) +21
5/11
- —1 20 20
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Fig. 4. Inertia matrix of the vibrational motion equations for the flight phase
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Re;, Re Re; Re; Re, . Re T

1 im

41+42+43 41+42+43| | 41 | | 41 |

41+42+43 | | 41+42+43

Re,(6,0)=

Fig. 5. Right hand side of the vibrational motion equations for the flight phase

Coriolis and centrifugal forces in the vibrational differential equations. In EQ. (36), al the
expressions that do not encompass the quasi-accel erations can be presented as,

R ) 'S 00 ‘T
e5fr _gz‘+2i=j+l_ aé‘{f ' i+21=/+1 65 i (55)
41 J
42 43
where
J JeaT j jul JnT
== 0Ky 20l 6,C el f e - I, Cy-'o,; a0, (56)

The constituent terms of Eq. (55), which are numbered from (41) to (43), form the RHS vector of
the vibrational differential equations as demonstrated in Fig. 5.

Generalized accelerations in the translational differential equations: In Eq. (37), al the
expressions that encompass g, , 6, and X, have been gathered as,

n—1 n n-1 m
ref T  ref k ref T ref g k .. ref T  ref
z_ X, Xk,3+z_ X S Xes |dx t+ zz X ALy,
k=1 P k=1 prs k=1 t=1 \——71%——“
D
n ; ; n-2 m ; y n=1 m / y ..
re, T re rej T  ref ref T  ref .
+ X R Clkt + Z Z X_j—n : Vk+ Okt + z Z - X_jfn ' g +0kt 5kz + Mmz Xj—n
k=1 t=1 k=1 t=1 k=1 t=1 50
47 48 49

where @y, , 2, ,7¢& "7 V., o &. and M, are presented in the Appendix. The constituent

terms of Exp. (I11), which are numbered from (44) to (50), form the inertia matrix of the
trandlational differential equations as displayed in Fig. 6.

k=1 k=2 k=n k=n+l| k=n+2
ql 511 1m qZ 521 2m qn nl nm ‘Xl X2
j=n+l| X 46+47+48+49 46+47+48+49 47 50 0
j=n+2| X, 46+47+48+49 46+47+48+49 47 0 50

Fig. 6. Inertiamatrix of the trandational motion equationsin the flight phase
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ReXl ReXZ T

_) .
Re, (0,6)= | 51 51
Fig. 7. Right hand side of the translational motion equations for the flight phase

Coriolis and centrifugal forces in the translational differential equations: In EQ. (37), al the
expressions which do not encompass ¢, , Skt and X, can be represented as:

n O'F)
Re, =Y ——2'§S.
o le oX, (57)

51

The constructive term of Eq. (57) which is numbered (51), form the RHS vector of the
trandational differential equations as exhibited in Fig. 7.

3.2.2. Assembling the inertia matrices and the RHS vectors of motion equations

In the previous section, the inertia matrices for the rotational (Fig. 2), vibrational (Fig. 4) and
trandational (Fig. 6) motion equations were obtained. By assembling these three matrices, the
inertiamatrix of the system obtains as shown in Fig. 8.

1(®) k=1 k=2 k=n k=n+1|k=n+2
/ él é‘11 §1m QZ 621 - 52m - én 5,,1 5,,,,, X;_ X2
A I I I
3
. :1 11
J : 11 1l 11 11 11
glm
4, 1 1
3
P — 2 21
J : 11 11 11
5;2m
g, I
. 5n1
/e : 11
5}1}7[
j=n+l]| X I I
j=nt2 | X, m

Fig. 8. Inertiamatrix of the whole system in the flight phase
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Ql él 51m QZ 521 SZm qn gnl gnm ‘X;. XZ T

Fig. 9. Right hand side vector of governing equations for the flight phase

F?e(@, G)) = 51

The inertia matrix of this robotic system is symmetric. Therefore, in Fig. 8, it is sufficient to
compute only those parts that are specified as (1), (1) and (l11). This procedure is covered with
details in the Appendix. Finally, by assembling the RHS vectors in the rotational (Fig. 3),
vibrational (Fig. 5) and trandational (Fig. 7) differentia equations, Coriolis and centrifugal
forces of the motion equationsin the flight phase will be obtained as shown in Fig. 9.

3.3. Dynamics of the system in the impact phase

To accomplish the objectives of this section, the absolute velocity of each joint should be
determined first. Apparently, for a serial manipulator constructed of n elastic links, there are
n +1 joints and end points. The absolute velocities of these »n +1 points can be represented as,

", (0,6)=J(0)0 8)
where J(®) is the Jacobian matrix of the aforementioned robotic system which is illustrated in
Fig. 10. It should be noted that 0" r, /00, is the derivative of the i " joint's position with
respect to the ;™ generalized coordinate. Also 'J ;.. represents the Jacobian matrix for the j th
row (j =1....3) and every column (L....n+2) of the i "joint (i =1....n+1).

An impact phenomenon happens when any joint or end point of the above-mentioned robotic
system touches the ground. So, by considering Eg. (38), the system’s motion equations in the
impact phase can be presented as,

ql 511 q'n é;,l 5nm Xl X2

1Jl,:
0 7R, | 877, 0 R, | 0F, 07, | 89F, | 877, | Y
dq, EEN oq, 06, 06,, 0X, 0X, Z
l‘]3,:
n+l

JL:

n+1J

2,:

n+lJ

3,:

Fig. 10. Jacobian matrix of » flying flexible links
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1,(0)®=Rd©,0)+J7(0)5F(:) (59)

where 6F(t) indicates the applied forces exerting on the joints or end points during their
collisions with the ground. By integrating Eq. (59) over theimpact time (¢~ —¢"), we get:

Loter-e)-rol = [e)refS -bele] e

where F = j t)dt and aso, O/ O are the generalized velocities just before/after an

impact. Eq. (60) presents n+nm+2 equations and n+nm+2+Number of Contact Points
unknowns. The additional equations can be obtained by having the relationship between the pre-
and post-impact velocities of joints or end points that collide with the ground, as follows:

J(G)_ )®+ = —eJ(G)_ )9_ (61)

In above equation, which is called the Newton's impact law, e denotes the coefficient of
restitution. By combining Egs. (60) and (61) and forming them in matrix format, we get

o e

For example, if two impulsive forces of éFsz(t) and é]*”qxl(t) are respectively and

simultaneously exerted on the p ™ joint in the "/ X, direction and on the ¢™ joint in the "/ X,

direction, then two rows and columns should be incorporated to the initial inertia matrix obtained
for the flying phase to establish the inertia matrix in the impact phase (see Fig. 11). Pre-
multiplication of both sidesin Eq. (62) by 7,%(®) provides the unknown variables. The outcomes

of the impact phase are the new initial conditions for the next flying phase.

4. Computer simulations

Here, the results of two computer simulations are presented to verify the proposed model.

Case study 1: For the first smulation, a planar single flexible link which is shown in Fig. 12, is
simulated. This system is released with the following initial conditions.

¢| ,=0rad; 8, =0 X,| =0m; X,| =05m;

. rad . 1 . . m. (63)
‘]1L0:OTi 511';:020;’ X1:X2|,=O:0;,
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1(0) E £ . S-S
b c 1S + ¥ +
1 1) I D I I I I
X X X 4 X 4 X 4
CE T ;
k=2 a
| 11 11 11
k=m+1 51;:
-+
k=n-m+nm -I I q,
k= n-m+nm+1 5”*1
R s
mmetric .
k= n+nm > 5:’”
k= n +nm+1 X 1+
k= n +nm+2 X 2*
X,
FP
Fh

Fig. 11. A sample inertia matrix of the impact phase

The elastic properties of this flexible link is modeled by the first eigen function of EBBT with
clamped-clamped boundary conditions.

X,y; = SiN(4.73157)-1.017 cog4.731) - sinh(4.7317) +1.017cosh(4.7317) (63)
Orn = d;;” (64)
Xi g
XA
. o [ 0

Flexible Link
Rigid Surface

Fig. 12. A single flexible link released from a specific height
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Table 1. Required parameters for simulating the planar motion of asingle flexible flying link

Parameters Value Unit
Length of the link L=1 m
Mass per unit length =1 kg m™!
Bending stiffness EI, =1000 N - m?

589 0 0
Mass moment of inertia per unit length J,=| 0 294 0 [x10° kg-m

0 0 294

Gravity g=981 m-s?
Coefficient of restitution e=1

The necessary parameters for the ssimulation can be found in Table 1. Also, the results of the
numerical solutions are depicted in Figs. 13-20.

10*°

2X

— Elastic
-=--Rigid

t (sec)

Nt R

RN H DR TRRTIA

I ’l

— Elastic
---Rigid

Fig.

t (sec)

14. Angular velocity of the flexible link
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Fig. 20. Absolute velocity of O, inthe "X, direction

The ssmulation results indicate that the system collides with the rigid surface at two different
times. + =0.3194sec and ¢ = 0.9388 sec . The flexible link has aimost no rotational motion. This

fact can be concluded from Fig. 13 and Fig. 14. Also, the horizontal motion of this elastic link is
negligible according to Fig. 17 and Fig. 18. Fig. 19 indicates that when the link is assumed rigid,

it will reach itsinitial height (X, =0.5m), based on the conservation of energy law. When the

link is assumed flexible, it will not reach itsinitial position. Thisis predictable; because when the
elastic link strikes the ground, part of its energy will be converted to vibration energy due to the
excitation of vibrational modes.

Case study 2: The purpose of the second case study is to compare the computational complexity
of the algorithm proposed in the current paper with the method presented in [37]. A two-flexible-
link planar robotic manipulator confined within a circle is smulated for this purpose. The
computer simulation results of this model can be found in Figs. 12-20 of [37]. As expected, the
same results are obtained by the developed algorithm proposed in the current work. To save
space, the time responses of this system have not been presented in the current paper. However,
the computational procedures required to obtain the governing equations of the aforementioned
robotic systems by both recursive algorithms are presented in Table 2. In genera, the required
number of mathematical operations of 3x3 rotationa matrices is less than that of 4x4
transformation matrices. For example, the CPU time for deriving the motion equations of this
two-link flexible robotic system taken by the Intel (R) Core (TM) i3-3220 processor running at
3.3 GHz is 17.96 sec for the 3x3 rotational matrices and 21.13 sec for the 4x4 transformation

matrices respectively.
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Table 2: Required mathematical operations for recursive algorithms based on
3x3 rotational matrices and 4x4 transformation matrices

Sums Products Method

75 )
~18+ 26n — 6m +13mn” — 4mn —27+7n—9m+18mn — 6mn

3x3
+12m?n® —15m%n + 3m® + 5n +3_;’m2n2_fm2n+3m2+gn2
125 5
334+ 481 —10m + 25mn’ — 9mn —-41+ 7n—13m+27mn —10mn »
X
+20m2n? — 28m®n + 6m? + 4n? +5_25mznz_ﬁmzn+6mz+5nz
Sums Products n=10; m=2
7062 9972 3x3
12551 16032 4x4

5. Conclusion

In this article, an automatic algorithm has been proposed for the mathematical modeling of finite
and impulsive motions of n-elastic-link robotic systems with flying platform. Since the
derivation of motion equations of this robotic arm is too complex, the developed procedure in
this paper has been explained, graphically. Aswe know, when the D.O.F of the system increases,
the Lagrangian formulation requires more total and partia differentiations relative to the Gibbs-
Appell formulation. So, to accomplish the purpose of this paper, the governing equations in the
flying phase are derived by exploiting the Gibbs-Appell formulation in recursive form.
Moreover, to formulate the impulsive motion of the system, the application of Newton's
kinematic impact law has been employed. More importantly, as is demonstrated in the
manuscript, deriving the motion equations of the aforementioned robotic system by 3x3
rotational matrices instead of 4x4 transformation matrices can significantly improve the
efficiency of the applied algorithm. Consequently, a less costly computational procedure can be
used to satisfactorily simulate the same model.

Algorithms based on 3x3 rotational matrices enjoy unique benefits such as less computational
steps, however, these algorithms suffer from lengthy formulations. Further research can thus
focus on the development of an algorithm that combines 3x3 rotational matrices with 4x4
transformation matrices to strike a balance between high computational load and lengthy
complicated formulations.

Appendix

The expressions appearing in the inertia matrix are defined as follows:

n n

jUk = Zij(Bgi +By )iRk ij = ZjRi (Bgi + By, )iRk d Oy = ZjRi (Bgi + By, )[Rk

i=max(k, j) i=max(k+1,j) i=max(k,j+1)
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c.= Z R(B, + B, R

i=max(k+1, j+1)
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i=j
n
reff/a = Z " RiB3i iRk
i=k+1

n

J _ Jow J
Vi = z ro,/ojBO[ Rref

i=j+1
n-1
J _ Jjqt7 t
Ve = Z A, 00, R
t=k+1
j-1
J _ Jj t= t
Wk - Rz 70,,10 Rk
t=k

J - t
+ Szw)'ro,ﬂ/o, R,

n

v, = Z 4-;/0 'RB,'R,

i=max(k,j+1)

‘l//,g = Z Yo.10., jRiB3iiRk

i=max(k+1, j+2)

n-1

jU Z( 7t+j ,+)l:) /o, ‘R,

g & = z ‘/.RiBa' [Rk

i=max(k,j+1)

mffk = Z refRiBsiiRk

i=k

n

J — Jo J
Vi = Z rO,/O/BO[ R,

i=max(k+1, j+1)

J 1
o= 2 oo B R,

i=j+2

n=1

ref ref
I/k /I t rO 1! 0 k
t=k

j-1

J _ J =7 t
W, = Z RTo 10, Ry

t=k+1

ref _ ref
/lk - ZB 0i Rk

i=k+1

(A1) - (A.33)

n

J —
l//k+ -

i=max(k+1, j+1)

U, = <t (17t+1

t=k

[ t
egt*) r0/+1/0/ Rk

Vo J i
Z To10, RBy'R,

i( ,+)to 10, R,
t=k+

Zn:jRiB&' iRk

i=max(k+1,j+1)

j*g —
"

n
Jt — J i
ref z RiBSi Rref

i=j+1
n

— J J
Vi = Z ro,/0]+1B0[ R,

i=max(k+1,j+2)

iBOi ij

i=max(+1, j+1)

n
M, =2 By
i=1

Also, theinertia matrix of the whole system (Fig. 8) is constructed as follows:

Calculation of the inertiamatrix for ¢, in the rotational motion equations (1):

Jor j=lin-Lk=jn-1 = I,,=1+2+3;

Jor j=lin-Lk=n = [,,=1+2;

for j=n;k=n = ]jkOO =1;
Calculation of the inertia matrix for &,

Jor j=lin-2k=jt=1tm = I,, =4+5+6+7+8+10;

in the rotational motion equations (1):
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Jor j=lin-3ik=j+1in-2,t=1im = [,, =4+5+6+7+8+9+10;
Jor j=1lin-2k=n-Lt=1m = [,, =4+5+6+7+9+10;
Jor j=n-Lk=n-Lt=1:m = [,, =4+5+6+7+10;
Jor j=lin-Lk=nt=1:m = [,,=9+10;
for j=n;k=nt=1l:m = Ijkm =10;
Calculation of theinertiamatrix for X, in the rotational motion equations (1):
Jor j=lin=-Lk=n+lin+2 = [,,=11+12;

for j=nk=n+ln+2 = Ijkoozll;

Calculation of the inertia matrix for ¢, in the vibrational motion equations (I1):

Jor j=lin=-2k=j; f=1im = 1,,=15+16+17+18+19+21;

Jor j=n-Lk=j, f=1lim = [,,=15+17+18+19+ 21,

Jor j=lin—-2k=j+1in-1 f=1im = [,,=15+16+17+18+19;

Jor j=1in-2k=n; f=lim = [,,=15+16+18;

Jor j=n-Lk=n; f=1lm = [,,=15+18;

Jor j=nik=n; f=1lim = [,,=21

Calculation of theinertiamatrix for §,, in the vibrational motion equations (I1):

Jor j=1in-2yk=j; f=Limit=1m = I,, =22+23+24+25+26+29+30+31+32;

for j:l:n—3;k=j+l' f:l:m;tzlim = /

JKft
for j=lin—4 k=j+2:n-2 f=Limt=lim = I,
+ 34+ 35+ 36

Jor j=1in=-3 k=n-1L f=1lim;t=1'm = [,, =22+23+26+30+31+32+34+35+36;
Jor j=n—-20k=n-1 f=Limt=1m = [I,, =22+23+26+30+31+32+34+36;

for j=n-Lk=n-1 f=lim t=1m = I, =22+26+29+31+32;

Jkft

for j=ln-2k=n, f=1:m;t=1:m = I, =34+35+36;

Tkt

for j=n-Lk=n; f=1lim;t=1:m = I,, =34+36;

for j=nik=n;, f=lim;t=1:m = I,, =29,

J!

=22+23+24+25+26+30+ 31+ 32+ 34+ 36;

=22+ 23+ 24+ 25+ 26+ 30+ 31+ 32

38



A. M. Shafei / Journal of Theoretical and Applied Vibration and Acoustics 3(1) 15-40(2017)

Calculation of the inertiamatrix for ., in the vibrational motion equations (I1):
Jor j=lin-2yk=n+1lin+2; = [,, =37+38+39+40;

Jor j=n-Lk=n+lin+2; = [I,, =37+39+40;

for j=n;k=n+ln+2, = Ijk00 = 40;

Calculation of the inertiamatrix for X, in the trandlational motion equations (111):

for j=n+l:n+2,k=j, = Ij,(00=50;
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