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such a system can be fully determined by two distinct solution 
procedures. Highly nonlinear differential equations are exploited to 
model the falling phase of the system prior to normal impact; and 
algebraic equations are used to model the normal collision of this 
open-chain robotic system. To avoid employing the Lagrangian 
method which suffers from too many differentiations, the governing 
equations of such complicated system are acquired via the Gibbs-
Appell (G-A) methodology. The main contribution of the present 
work is the use of an automatic algorithm according to 3×3 rotational 
matrices to obtain the system’s motion equations more efficiently. 
Accordingly, all mathematical formulations are completed by the use 
of 3×3 matrices and 3×1 vectors only. The dynamic responses of this 
system are greatly reliant on the step sizes. Therefore, as well as 
solving the obtained differential equations by using several ODE 
solvers, a computer program according to the Runge-Kutta method 
was also developed. Finally, the computational counts of both 
algorithms i.e., 3×3 rotational matrices and 4×4 transformation 
matrices are compared to prove the efficiency of the former in 
deriving the motion equations. 
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1. Introduction  

When a mechanical system is subjected to applied impulses or the constraints on the system are 
abruptly varied, the velocity of the components in the system changes so rapidly that the duration 
of the process may be considered to be instantaneous. The mathematical modeling of ground 
collision in open chain robotic systems constructed of flexible links has diverse applications. For 
example, in the dynamic modeling of biped robotic systems, it is essential to know the dynamic 
responses of the system at the impact moments. In fact, the viscoelastic properties of human 
muscles that cover the bones justify the use of flexible links to model the bipedal robotic 
systems. 

Unlike the classical problem of collision between two objects, a small amount of literature exists 
about the impact phenomenon in robotic systems. In an early study of this subject, Wittenburg 
[1] employed the Newton-Euler’s methodology to obtain the governing equations at impact 
moments. Chang and Peng [2] exploited the Kane’s formulation to investigate the impulsive 
motion in robotic systems by considering four various kinds of impulsive constraints. 
Mathematical modeling of frictional impacts in robotic manipulators have been studied by 
Hurmuzlu and Marghitu [3]. They developed three dynamical models for the coefficient of 
restitution according to the Newton’s model of restitution. Rodriguez and Bowling [4] presented 
multi-point models of impact in rigid body systems. In this work, the effect of friction was also 
considered. The dynamic behavior of robotic manipulators with flexible joints colliding with 
their confining walls has been studied by Mahmoodi et al. [5]. In their paper, an adaptive 
controller is suggested to accomplish trajectory tracking of this robotic system. Shafei and Shafei 
[6] studied the effects of impact in open-chain robotic systems with flexible links. To simulate 
the conditions under which a single flexible link strikes with multiple flat confining walls, they 
employed the Newton’s impact law. However, the chief objective of all the aforementioned 
studies has been to better the modeling of impact in robotic manipulators with finite numbers of 
rigid or flexible links; and robotic systems with many degrees of freedom have not been 
considered. 

The two most important problems in the kinematic modeling of flexible robotic arms with impact 
phenomenon are: 1) How to model the impact moment between a flexible manipulator and the 
ground? and 2) How to capture an object by a flexible robotic arm with the least mechanical 
vibrations? Both of these impulsive events have involved many researchers [7-12]. The 
derivation of motion equations of elastic robotic arms, which encompass both aforementioned 
types of impulsive constraints, can be found in the works of Khulief and Shabana [13]. In this 
study, The FEM is utilized to model the elastic properties of the links for which the assumptions 
of Timoshenko Beam Theory (TBT) hold. A mathematical model was proposed by Yigit et al. 
[14] to study the dynamic responses of a rotating flexible beam with impact. Another model 
based on the Hertzian contact law, was proposed by the same authors for impact modeling [15]. 
However, because of system complexity, only one of the links was assumed to be flexible. Also, 
one may refer to the work of Chapnik et al. [16] in which the motion of a single flexible beam 
under impact loading was simulated by evaluating the proper initial conditions. Then, the 
obtained results from the computer simulation were compared to the measured data from the 
experimental setup. For more studies, one may refer to [17] where a literature review about 
impact in the dynamics of flexible robotic systems has been performed  by Khulief. 
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The two chief questions in multi-flexible-link robotic manipulators with impulsive constraints 
are: 1) How to construct a valid elasto-dynamic model with the acceptable computational counts, 
and 2) How to incorporate the algebraic equations of this multi-flexible-link robotic arm into the 
relevant differential equations. In most of mechanical systems, it is essential to model the system 
as precise as possible. When more bodies are employed in dynamic modeling a robotic system, 
the mathematical operations needed to obtain the motion equations grow rapidly. Therefore, it is 
crucial to exploit an automatic algorithm to derive the motion equations, as fast as possible. 
There are many formulations that are effective in deriving the governing equations of open-chain 
robotic systems [18-24]. A comprehensive literature survey of the different recursive algorithms 
for elastic robotic manipulators may be found in [25]. Nevertheless, the stress of this paper is on 
the Gibbs-Appell formulation which has been used the least among the other method. Recently, 
Korayem and Shafei effectively applied this methodology for systematic formulation of flexible 
robotic arms [26-28], mobile robotic manipulators [29-31] and manipulators with revolute-
telescopic joints [32, 33]. However, in none of these works the effects of impact between a 
manipulator and the ground have been considered. 

The governing motion equations of robotic arms consisting of the unilateral constraints have 
formerly been fully formulated. The finite and impulsive motions of robotic arms with impacts 
can be characterized by differential and algebraic equations, respectively. However, the 
implementation of these differential-algebraic equations is restricted by significant 
computational load especially when the number of shape functions used to model the elastic 
properties of the flexible links increases. Consequently, researchers have concentrated to better 
the algorithms in order to simulate more complicated robotic systems with impact phenomenon. 
Förg et al. [34] suggested an algorithm for robotic systems with several constraints to treat many 
impacts. An  nO  recursive algorithm according to the Projection Equation was offered by 
Gattringer et al. [35]. By using the Dirac delta functions, Tlalolini et al. [36] modeled the 
external forces originating from the collision of a thirteen-link humanoid robotic system with the 
ground. They exerted a Newton-Euler formulation in recursive form to extend an optimization 
algorithm for specifying the optimal cyclic gaits of the robot. Also, in the work of Shafei and 
Shafei [37], the mathematical model of multi-flexible-links subjected to impact was extracted in 
a symbolic format by employing the Gibbs-Appell formulation and 4×4 transformation matrices. 
However, despite using compact formulas in their work, the developed algorithm had a high 
computational complexity. Anyway, in all of the above-mentioned studies, the results of the 
impact model that should be exploited to characterize the generalized velocities of the system 
after impact moment, have not been formulated by an efficient algorithm with the least number 
of mathematical operations. 

The focus of this paper is about symbolic derivation of multi-flexible-link robotic arms in finite 
and impulsive motions. So, this paper is formed as follows: Section 2 explains the kinematics of 
the system under study. The dynamics of the system, containing the construction of its global 
inertia matrix and global RHS vector in the flight phase and also the construction of the Jacobian 
matrix in the impact phase are presented in Section 3. The results of two computer simulations 
are presented in Section 4 to prove the efficiency of the proposed algorithm. Finally, the 
concluding remarks are summarized in Section 5 and the merits of the proposed method are 
highlighted. 
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2. Kinematics of a falling down multi-flexible link 

2.1. System specifications 

This section presents the kinematics of a planar robotic arm which constructed by flexible links 
and floated through the space. Link ( 1i ) and Link ( i ) of this robotic system are depicted in 
Fig. 1. Two moving frames ( 3,2,1,3,2,1, ˆˆˆ, iiiiii xxxxxx ) are assigned to each elastic link according to the 

forthcoming rules. 3,2,1, iii xxx  is the moving frame for the i th  link that its origin is located at the 

start of this body; the 1,ix  axis is along the link when it is undeformed and the 3,ix  axis is aligned 

the joint axis. On the other hand, the origin of 3,2,1, ˆˆˆ iii xxx  moving frame is situated to the end of 

this link and its orientation is precisely the same as the 3,2,1, iii xxx  moving frame, when this link 

has no deformation. Finally, 321 XXX refrefref  is the coordinate system which is devoted to the 

ground, as the global reference frame. In this paper, it is supposed that the manipulator has a 
moving base and consequently can easily move. So, the position and velocity of 1O  with respect 

to the inertia reference frame are respectively denoted by jX  and jX , where 2,1j . It is 

emphasized, the elastic attributes of the flexible links (i.e., modulus of elasticity iE  and modulus 

of rigidity iG ), mass per unit length ( i ) and mass moment of inertia per unit length ( iJ  ) are 

assumed to be isotopic along the links. Here, the elastic property of each link is modeled with the 
same number of shape functions ( m ). So, the degree of freedom (D.O.F) for the system is: 

2 nmnDOF  where n D.O.F are related to the joint angles ( jq ), nm  D.O.F of the system 

are related to the small deflections of the links ( ij ) and the remaining two D.O.F are associated 

with the position of the start point ( 1O ) with respect to the global coordinate system ( jX ). 

2.2. Kinematic equations 

In Fig. 1, a differential element, Q , is demonstrated. The location of this differential element 

with respect to the 3,2,1, iii xxx  moving frame can be represented as, 

    
  

Elastic

m

j ijij

Rigid

i
i

iQ/O
i ηtδη

i  


11, rxr  
(1) 

where  T
i

i 0011, x  and i  is the distance between points Q  and iO  when this link is 

assumed to be rigid. Also,  Tijijijij xxx 321r  is the eigen function vector which consists of 

longitudinal and bending mode shapes ( ijx1 , ijx2  and ijx3 ). Furthermore, the rotation of Q  can be 

expressed by assumed mode method (AMM) as, 
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Fig. 1. A falling down multi-flexible links 
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where  Tijxijxijxij θθθ
321

θ  is the eigen function vector which includes rotational shape 

functions (
ijxθ 1
, 

ijxθ 2
 and 

ijxθ 3
) in principle axes (

1,ii xO , 
2,ii xO  and 

3,ii xO ). 

As the approach proposed in this paper is according to the G-A methodology, the absolute 
acceleration of Q  is needed. This term can be expressed as, 

  
iiiii Q/O

i
i

i
i

i
Q/O

i
i

i
Q/O

i
i

i
Q/O

i
O

i
Q

i rωωrωrωrrr   2  (3) 

where 
iO

ir  is the acceleration of the ith joint and i
iω  is the angular velocity of the ith link. Also, 

iQ/O
i r  and 

iQ/O
i r  can be obtained by once and twice differentiating of Eq. (1), respectively. In 

following section, Eq. (3) will be employed to establish the Gibbs function (acceleration energy) 
of the system. 

3. Dynamics of a falling down multi-flexible link 

In this section, two dynamical models, namely, flying phase and impact phase are developed to 
study the dynamic behavior of multi-flexible-link robotic systems. The finite motion of the 
above-mentioned robotic system during the flying phase will be obtained by differential 
equations, while the impulsive motion due to the collision of this mechanical system with the 
ground will be formulated by algebraic equations. In below, the details of these two phases are 
described. 

3.1. Dynamics of the system in the flying phase 

In the flying phase, the manipulator is suspended through the space and has no contact with the 
ground [38]. In this paper, differential equations for the flying phase are attained by the G-A 
formulation, in which the acceleration energy and potential energy of each elastic link are 
calculated first, and then theses partial terms are added together for all flexible links to provide 
the Gibbs function ( S ) and the potential energy (V ) of the whole system. Here, it should be 
noted that all dynamical methods lead to the same motion equations. However, the approach 
suggested in this study is based on the G-A formulation which involves with less computational 
counts. 

3.1.1. Gibbs function of the whole system 

The Acceleration energy of a serial robotic manipulator which consists of n flexible links with 
lengths il  can be presented as, 

      






 

n

i

l

ii
i

ii
T
i

i
Q

iT
Q

i
ii

i

dJS
1

0 2

1

2

1  ωωrr   (4) 

where i
iω~  is the skew symmetric tensor associated with vector i

iω . By introducing Eq. (3) into 

Eq. (4) one may obtain: 
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where 
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In the G-A method, the governing equations are derived by differentiating the acceleration 
energy with respect to quasi-accelerations (linear combination of generalized accelerations). 

Thus, it is not necessary to evaluate those terms in Gibbs function that do not encompass jq , jfδ  

and jX  as quasi-accelerations. As observed in Eq. (5), all these terms are named as "irrelevant 

terms". Also all the variables appearing in Eqs. (6-16), including the integrations of mode shape 
products can be expressed as: 

   
il

ijiij d
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il

i
i
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As mentioned above, one should evaluate the derivatives of acceleration energy with respect to 
quasi-accelerations. So, we get: 

Differentiation with respect to jq   
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Differentiation with respect to jfδ  
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Differentiation with respect to jX  
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3.2.1. Potential energy of a falling down multi-flexible-link system 

The potential energy of a falling down n-flexible-link robotic manipulator arises from two 
sources: 1) Gravity and 2) Strain energy. The effect of gravity can be considered by assuming 
that the origin of the global coordinate system has an acceleration of g1  to the top. However, to 
obtain the strain energy, one may refer to [32] where this function has been evaluated as, 
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where ix j
I  ( 3,2,1j ) are the area moments of inertia about the principle axes ( 1,ii xO , 2,ii xO  and 

3,ii xO ). Motion equations of the aforementioned robotic arm will be completed by taking the 

derivatives of potential energy with respect to the quasi-coordinates. So, we get:  

Differentiation with respect to jq  
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Differentiation with respect to jfδ  
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Differentiation with respect to jX  
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3.1.2. Inverse dynamic equations of a falling down n-flexible-link robotic arm 

Here, it is assumed there are no torque on the joints and no load on the links. With this 
proposition, the motion equations of the above-mentioned robotic system, in the flying phase, 
can be obtained as follows: 

The rotational motion equations of the joins 
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S
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The vibrational motion equations of the links 
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The translational motion equations of 1O  
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For the computer simulation of the aforementioned robotic system, the inverse dynamic form of 
the motion equations (Eqs. (35-37)) should be transformed to the direct dynamic form. The 
details are presented in the following section. 

3.2. Direct dynamics of a falling down flexible multiple links 

In this section, Eqs. (35-37) are converted to the following direct dynamics form: 

      ,ReΘfI  (38) 

where  fI  is the inertia matrix of this n-elastic-link robotic system in the flying phase. Also 

Θ  and   ,Re  can be represented as 

  Tnmnnmm XXqqq 21122121111 ............  Θ  (39) 
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In continue, the derivatives of 
iO

i r  and i
iω  with respect to jq , jfδ  and jX  appearing in Eqs. 

(27-29) should be computed. These two terms in summation form can be written as: 
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where 
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r  and is

i
,ω  denote those parts of 
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iω  that encompass the generalized 

accelerations; while 
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i
,ω  represent those parts of 

iO
i r  and i

iω  that do not include jq , 

jf  and jX  as generalized accelerations. These four terms can be presented as, 
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where     
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Also,  Tref 0011 X ,  Tref 0102 X ,  Tref 1003 X  and  T
k

k 1003, x . 

Finally, k
iR  is a rotation matrix that indicates the orientation of the 3,2,1, kkk xxx  moving frame 

with respect to the 3,2,1, iii xxx  one. For more details about k
iR  one may refer to [30]. Now, the 

derivatives of 
iO

i r  and i
iω  with respect to jq , jf  and jX  can be written as, 
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3.2.1. Building the global inertia matrix and the global RHS vector 

To establish the inertia matrix for this multi-flexible-link system in the flying phase, it is 
necessary to introduce Eqs. (43-46) and also Eqs. (47-51) into Eqs. (35-37). Then, all the 

expressions that contain generalized accelerations, i.e., jq , jf  and jX , should be kept on the 

left hand side (LHS) and all the remaining expressions should be taken to the RHS. By arranging 
the LHS expressions in a matrix format, the inertia matrix for this robotic system will be 
attained. The details of this procedure are explained below. 

Generalized accelerations in the rotational differential equations: In Eq. (35), the expressions 
that encompass kq , kt  and kX  can be represented as, 
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Fig. 2. Inertia matrix of the rotational motion equations in the flight phase 
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j , ref

j  and ref
j  are presented in Appendix. 

The constituent terms of Exp. (I), numbered from (1) to (12), form the inertia matrix of the 
rotational differential equations that illustrated in Fig. 2. 

Coriolis and centrifugal forces in the rotational differential equations: In Eq. (35), if all the 
expressions that do not encompass generalized accelerations ( kq , kt  and kX ) are transferred to 

the RHS, one may obtain: 
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The constituent terms of Eq. (52), numbered (13) and (14), construct the RHS vector of the 
rotational differential equations that depicted in Fig. 3. 

Generalized accelerations in the vibrational differential equations: In Eq. (36), all the 
expressions that encompass generalized accelerations ( kq , kt  and kX ) as their coefficients can 

be represented as, 

 

 

Fig. 3. Right hand side of the rotational motion equations for the flight phase 
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(II) 

The constituent terms of Exp. (II), numbered from (15) to (40), establish the inertia matrix of the 
vibrational differential equations as illustrated in  Fig. 4.  

 

 

Fig. 4. Inertia matrix of the vibrational motion equations for the flight phase 
 

 I  
1k  2k    nk   1 nk  2 nk  

1q  11    m1  2q  21    m2    nq  1n    nm  1X  2X  

1j  

11  15 +16 +17 +18 +19 +21 

22+23+24+25+26 29+30+31+32 

15 +16 +17 +18 +19 

22+23+24+25+26 +30+31+32+34+36 

 15 +16 +18 
34+35+36 

37+38 39+40 
37+38 39+40 

  

m1   

2j  

21  15 +16 +17 +18 +19 +20 +21 

22+23+24+25+26 28+30+31+32+33 

15 +16 +17 +18 +19 +21 

22+23+24+25+26 29+30+31+32 

 15 +16 +18 
34+35+36 

37+38 39+40 
37+38 39+40 

  

m2   

                 

nj   
1n  20 +21 

27+28+33 
20 +21 

27+28+33 

 21 29 

  

  40 40 

nm     



A. M. Shafei / Journal of Theoretical and Applied Vibration and Acoustics 3(1) 15-40(2017) 

28 
 

 

Fig. 5. Right hand side of the vibrational motion equations for the flight phase 

 

Coriolis and centrifugal forces in the vibrational differential equations: In Eq. (36), all the 
expressions that do not encompass the quasi-accelerations can be presented as, 
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where 
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The constituent terms of Eq. (55), which are numbered from (41) to (43), form the RHS vector of 
the vibrational differential equations as demonstrated in Fig. 5. 

Generalized accelerations in the translational differential equations: In Eq. (37), all the 
expressions that encompass kq , kt  and kX  have been gathered as, 
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where k
ref V , k

ref  , k
ref  , k

refV , k

ref  and totM  are presented in the Appendix. The constituent 

terms of Exp. (III), which are numbered from (44) to (50), form the inertia matrix of the 
translational differential equations as displayed in Fig. 6. 

 

 

Fig. 6. Inertia matrix of the translational motion equations in the flight phase 
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Fig. 7. Right hand side of the translational motion equations for the flight phase 

 
Coriolis and centrifugal forces in the translational differential equations: In Eq. (37), all the 
expressions which do not encompass kq , kt  and kX  can be represented as: 
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(57) 

The constructive term of Eq. (57) which is numbered (51), form the RHS vector of the 
translational differential equations as exhibited in Fig. 7. 

3.2.2. Assembling the inertia matrices and the RHS vectors of motion equations 

In the previous section, the inertia matrices for the rotational (Fig. 2), vibrational (Fig. 4) and 
translational (Fig. 6) motion equations were obtained. By assembling these three matrices, the 
inertia matrix of the system obtains as shown in  Fig. 8.  

 

 
Fig. 8. Inertia matrix of the whole system in the flight phase 
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Fig. 9. Right hand side vector of governing equations for the flight phase 

 

The inertia matrix of this robotic system is symmetric. Therefore, in Fig. 8, it is sufficient to 
compute only those parts that are specified as (I), (II) and (III). This procedure is covered with 
details in the Appendix. Finally, by assembling the RHS vectors in the rotational (Fig. 3), 
vibrational (Fig. 5) and translational (Fig. 7) differential equations, Coriolis and centrifugal 
forces of the motion equations in the flight phase will be obtained as shown in Fig. 9.  

3.3. Dynamics of the system in the impact phase 

To accomplish the objectives of this section, the absolute velocity of each joint should be 
determined first. Apparently, for a serial manipulator constructed of n elastic links, there are 

1n  joints and end points. The absolute velocities of these 1n  points can be represented as,  

    Θr   J
iO

ref ,  (58) 

where  J  is the Jacobian matrix of the aforementioned robotic system which is illustrated in 

Fig. 10. It should be noted that jO
ref

i
 /r  is the derivative of the i th joint’s position with 

respect to the j th generalized coordinate. Also :,j
iJ  represents the Jacobian matrix for the j th 

row ( 3....1j ) and every column ( 2....1 n ) of the i th joint ( 1....1  ni ). 

An impact phenomenon happens when any joint or end point of the above-mentioned robotic 
system touches the ground. So, by considering Eq. (38), the system’s motion equations in the 
impact phase can be presented as, 

 

 

Fig. 10. Jacobian matrix of n flying flexible links 
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        tJI T
f FReΘ   ,  (59) 

where  tF  indicates the applied forces exerting on the joints or end points during their 

collisions with the ground. By integrating Eq. (59) over the impact time (   tt ), we get: 
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where  dtt
t

t



 FF   and also, Θ / Θ  are the generalized velocities just before/after an 

impact. Eq. (60) presents n+nm+2 equations and n+nm+2+Number of Contact Points 
unknowns. The additional equations can be obtained by having the relationship between the pre- 
and post-impact velocities of joints or end points that collide with the ground, as follows: 

       ΘΘ  eJJ  (61) 

In above equation, which is called the Newton’s impact law, e  denotes the coefficient of 
restitution. By combining Eqs. (60) and (61) and forming them in matrix format, we get 
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(62) 

For example, if two impulsive forces of  tF X
p

2  and  tF X
q

1  are respectively and 

simultaneously exerted on the p th joint in the 2Xref  direction and on the q th joint in the 1Xref  
direction, then two rows and columns should be incorporated to the initial inertia matrix obtained 
for the flying phase to establish the inertia matrix in the impact phase (see Fig. 11). Pre-
multiplication of both sides in Eq. (62) by  1

iI  provides the unknown variables. The outcomes 

of the impact phase are the new initial conditions for the next flying phase.  

4. Computer simulations 

Here, the results of two computer simulations are presented to verify the proposed model. 

Case study 1: For the first simulation, a planar single flexible link which is shown in Fig. 12, is 
simulated. This system is released with the following initial conditions. 
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Fig. 11. A sample inertia matrix of the impact phase 

 
The elastic properties of this flexible link is modeled by the first eigen function of EBBT with 
clamped-clamped boundary conditions. 
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Fig. 12. A single flexible link released from a specific height 
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Table 1. Required parameters for simulating the planar motion of a single flexible flying link 

Parameters Value Unit 

Length of the link 11 l  m 

Mass per unit length 11   kg ∙ mିଵ 

Bending stiffness 1000
3
xEI  N ∙ mଶ 

 

Mass moment of inertia per unit length 5
1 10

94.200

094.20

0089.5

















J  kg ∙ m 

Gravity 81.9g  m ∙ sିଶ 

Coefficient of restitution 1e   

 

The necessary parameters for the simulation can be found in Table 1. Also, the results of the 
numerical solutions are depicted in Figs. 13-20.  

 

 
Fig. 13. Angular position of the flexible link 

 

Fig. 14. Angular velocity of the flexible link 
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Fig. 15. Flexural displacement of the flexible link 

 
Fig. 16. Modal generalized velocity of the flexible link 

 

Fig. 17. Horizontal position of O1 

 

Fig. 18. Absolute velocity of O1 in the refX1 direction 
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Fig. 19. Vertical position of O1 

 
Fig. 20. Absolute velocity of O1 in the refX2 direction 

 
The simulation results indicate that the system collides with the rigid surface at two different 
times: sec3194.0t  and sec9388.0t . The flexible link has almost no rotational motion. This 
fact can be concluded from Fig. 13 and Fig. 14. Also, the horizontal motion of this elastic link is 
negligible according to Fig. 17 and Fig. 18. Fig. 19 indicates that when the link is assumed rigid, 
it will reach its initial height ( mX 5.02  ), based on the conservation of energy law. When the 
link is assumed flexible, it will not reach its initial position. This is predictable; because when the 
elastic link strikes the ground, part of its energy will be converted to vibration energy due to the 
excitation of vibrational modes.  

Case study 2: The purpose of the second case study is to compare the computational complexity 
of the algorithm proposed in the current paper with the method presented in [37]. A two-flexible-
link planar robotic manipulator confined within a circle is simulated for this purpose. The 
computer simulation results of this model can be found in Figs. 12-20 of [37]. As expected, the 
same results are obtained by the developed algorithm proposed in the current work. To save 
space, the time responses of this system have not been presented in the current paper. However, 
the computational procedures required to obtain the governing equations of the aforementioned 
robotic systems by both recursive algorithms are presented in Table 2. In general, the required 
number of mathematical operations of 3×3 rotational matrices is less than that of 4×4 
transformation matrices. For example, the CPU time for deriving the motion equations of this 
two-link flexible robotic system taken by the Intel (R) Core (TM) i3-3220 processor running at 
3.3 GHz is sec96.17  for the 3×3 rotational matrices and sec13.21  for the 4×4 transformation 
matrices respectively. 
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Table 2: Required mathematical operations for recursive algorithms based on 
3×3 rotational matrices and 4×4 transformation matrices 

Sums Products Method 

22222

2

531511

41362618

nmnmnm

mnmnmn




 

22222

2

2

9
3

2

45

2

33

6189
2

75
27

nmnmnm

mnmnmn




 3×3 

22222

2

462820

925104833

nmnmnm

mnmnmn




 

22222

2

2

15
6

2

75

2

55

102713
2

125
41

nmnmnm

mnmnmn




 4×4 

Sums Products n=10; m=2 

7062 9972 3×3 

12551 16032 4×4 

 

5. Conclusion 

In this article, an automatic algorithm has been proposed for the mathematical modeling of finite 
and impulsive motions of n-elastic-link robotic systems with flying platform. Since the 
derivation of motion equations of this robotic arm is too complex, the developed procedure in 
this paper has been explained, graphically. As we know, when the D.O.F of the system increases, 
the Lagrangian formulation requires more total and partial differentiations relative to the Gibbs-
Appell formulation. So, to accomplish the purpose of this paper, the governing equations in the 
flying phase are derived by exploiting the Gibbs-Appell formulation in recursive form. 
Moreover, to formulate the impulsive motion of the system, the application of Newton’s 
kinematic impact law has been employed. More importantly, as is demonstrated in the 
manuscript, deriving the motion equations of the aforementioned robotic system by 3×3 
rotational matrices instead of 4×4 transformation matrices can significantly improve the 
efficiency of the applied algorithm. Consequently, a less costly computational procedure can be 
used to satisfactorily simulate the same model. 

Algorithms based on 3×3 rotational matrices enjoy unique benefits such as less computational 
steps; however, these algorithms suffer from lengthy formulations. Further research can thus 
focus on the development of an algorithm that combines 3×3 rotational matrices with 4×4 
transformation matrices to strike a balance between high computational load and lengthy 
complicated formulations. 

Appendix 

The expressions appearing in the inertia matrix are defined as follows:  
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Also, the inertia matrix of the whole system (Fig. 8) is constructed as follows: 

Calculation of the inertia matrix for kq  in the rotational motion equations (I):  

;3211:;1:1 00  jkInjknjfor  

;21;1:1 00  jkInknjfor  

;1; 00  jkInknjfor  

Calculation of the inertia matrix for kt  in the rotational motion equations (I):   

;1087654:1;;2:1 0  tjkImtjknjfor  
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;10987654:1;2:1;3:1 0  tjkImtnjknjfor  

;1097654:1;1;2:1 0  tjkImtnknjfor  

;107654:1;1;1 0  tjkImtnknjfor  

;109:1;;1:1 0  tjkImtnknjfor  

;10:1;; 0  tjkImtnknjfor  

Calculation of the inertia matrix for kX  in the rotational motion equations (I):   

;12112:1;1:1 00  jkInnknjfor  

;112:1; 00  jkInnknjfor  

Calculation of the inertia matrix for kq  in the vibrational motion equations (II):   

;211918171615:1;;2:1 0  jkfImfjknjfor  

;2119181715:1;;1 0  jkfImfjknjfor  

;1918171615:1;1:1;2:1 0  jkfImfnjknjfor  

;181615:1;;2:1 0  jkfImfnknjfor  

;1815:1;;1 0  jkfImfnknjfor  

;21:1;; 0  jkfImfnknjfor  

Calculation of the inertia matrix for kt  in the vibrational motion equations (II):   

;323130292625242322:1;:1;;2:1  jkftImtmfjknjfor  

;36343231302625242322:1;:1;1;3:1  jkftImtmfjknjfor

 

;363534

3231302625242322:1;:1;2:2;4:1



 jkftImtmfnjknjfor
 

;363534323130262322:1;:1;1;3:1  jkftImtmfnknjfor  

;3634323130262322:1;:1;1;2  jkftImtmfnknjfor  

;3231292622:1;:1;1;1  jkftImtmfnknjfor  

;363534:1;:1;;2:1  jkftImtmfnknjfor  

;3634:1;:1;;1  jkftImtmfnknjfor  

;29:1;:1;;  jkftImtmfnknjfor  
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Calculation of the inertia matrix for kX  in the vibrational motion equations (II):   

;40393837;2:1;2:1 00  jkInnknjfor  

;403937;2:1;1 00  jkInnknjfor  

;40;2:1; 00  jkInnknjfor  

Calculation of the inertia matrix for kX  in the translational motion equations (III):   

;50;;2:1 00  jkIjknnjfor  
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