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In this paper, free longitudinal vibration of nanorods is investigated 
from the wave viewpoint. The Eringen’s nonlocal elasticity theory is 
used for nanorods modelling. Wave propagation in a medium has a 
similar formulation as vibrations and thus,  it can be used to describe 
the vibration behavior. Boundaries reflect the propagating waves 
after incident. Firstly, the governing equation of nanorods 
longitudinal vibration based on the Eringen’s nonlocal elasticity 
theory is derived. Secondly, the propagation matrix for nanorod 
waveguide is derived and then the reflection matrix for spring 
boundary condition is calculated. The relations between amplitudes 
of propagation and reflection waves in the waveguide dominant are 
then combined in a matrix form format to set up a laconic efficient 
method for free axial vibration analysis of nanorods. The exact 
analytical solution for arbitrary boundary conditions natural 
frequencies is derived. To validate this approach, the exact solutions 
of special boundary conditions cases (clamped-clamped and 
clamped-free) are used. At the end, the effect of nonlocal parameter 
on the natural frequencies and boundary stiffness for arbitrary 
boundary condition is discussed. 

© 2017 Iranian Society of Acoustics and Vibration, All rights reserved. 
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1. Introduction 

Innovation of carbon nanotubes [1] was a big inspiration for researchers in the field of nano-
engineering and technology during recent years. The nonlocal elasticity theory was presented by 
Eringen [2-5]. According to this theory, the strain in every point of the structure affects the stress 
tensor for each particular point of the medium. The nonlocal elasticity theory has been addressed 
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in several recent works. Longitudinal vibrations of the nanorods is studied by Aydogdu [6]. The 
nonlocal elasticity theory is applied on Euler–Bernoulli nanobeams to investigate the effects of 
nonlocal parameter on deflection by Peddieson et al. [7]. Aydogdu [8] studied the bending, 
buckling and vibration behaviors of nanobeams using a general nonlocal beam model. The 
effects of nonlocal parameter, boundary conditions and surrounded medium stiffness on natural 
frequencies of longitudinal vibration and buckling of embedded nanorods in an elastic medium 
are surveyed in several works [9-12]. Chang [13] investigated the longitudinal vibration of non-
uniform and non-homogeneous nanorods. Aydogdu and Elishakoff [14] studied vibration of 
nanorods restrained by a linear spring. The effect of an attached buckyball as a concentrated 
mass at the tip of a single-walled-carbon-nanotube on longitudinal natural frequencies is 
investigated by Murmu and Adhikari [15]. Karličić et al. [16] considered the effects of a 
transversal magnetic field on free longitudinal vibration of a complicated multi-nanorod. Şimşek 
[17] solved the motion equation for free axial vibration of tapered nanorods in which density, 
Young modulus and cross-sectional area of the nanorod vary functionally along the nanorod 
length. The considered boundary conditions are clamped–clamped and clamped–free. Li et al. 
[18] showed there is a good agreement between atomistic simulations and nonlocal theoretical 
approaches for free vibration of nanorods. Narendar and Gopalakrishnan [19] developed a 
nonlocal rod model for coupled nanorods and have derived explicit expressions for wave 
number. They showed that considering the effect of small-length scale has a high impact on 
wave characteristics of nanorods which is ignored in the classic model of such rod. Huang [20] 
studied the effects of nonlocal parameter on axial vibration of nanorod when internal long-range 
interactions are included. He shows that the internal long-range interactions make the nanorod 
stiffer. Kiani [21] used the nonlocal theory to study the free axial vibration of tapered nanowires 
with varying cross-section as a polynomial function. He used a perturbation technique based on 
the Fredholm alternative theorem to assess the problem in a more general form. Vibration 
characteristics such as the natural frequencies and corresponding mode shapes are derived 
analytically. The results are in good agreement with the exact solution and the differences 
increase with the rate of radii change. Murmu and Adhikari [22] have studied the longitudinal 
vibration of a double-nanorod-system. The Eringen’s nonlocal elasticity theory is utilized for the 
development of the governing equations. The two nanorods are coupled by longitudinally 
directed distributed springs. Clamped–clamped and clamped–free boundary conditions are 
considered and the explicit functions are derived. Li et al. [23] have derived an exact frequency 
equation for free axial vibration of a nanorod carrying a nanoparticle based on the nonlocal 
elasticity theory and the Love theory for longitudinal vibration. Oveissi et al. [24] investigated 
the effects of small-scale of the nanoflow and nanostructure on axial vibration of single-walled 
carbon fluid flowing nanotubes. They used the strain-inertia gradient and nonlocal theories for 
this study. According to this research, by increasing the Knudsen number and the effect of small-
scale, the critical flow velocity will decrease. Using the strain-inertia gradient theory leads to 
such increase. Karličić et al. [25] used the Eringen’s nonlocal theory for modelling a viscoelastic 
double-nanorod and investigated its free axial vibrations. They have found an exact solution for 
the longitudinal vibration of both clamped-clamped and clamped-free boundary conditions. The 
vibration of functionally graded nanorods has also been addressed by other researchers [26, 27]. 

Some research articles recently claimed that using the Eringen theory in the form of differential 
formulation may cause some inconsistencies. Challamel et al. [28] studied the self-adjointness of 
Eringen’s nonlocal elasticity theory. A simple one-dimensional beam model is used for this 



M.R. Hairi Yazdi  et al. / Journal of Theoretical and Applied Vibration and Acoustics 3(1) 61-76 (2017) 

63 
 

purpose. They have observed the nonself-adjointess in the Eringen’s model. Benvenuti and 
Simone [29] have shown that the integral approach of the Eringen theory has similar results in 
special cases as well as the Aifantis strain-gradient elasticity theory. Also, the small-scale effects 
in some cases can be captured by the Eringen theory when it is used in an integral form. The 
research is based on a one-dimensional elasticity problem. 

Propagating waves in waveguides is an alternative expression for describing vibration in 
structures instead of mode combinations. Both of these approaches have their benefits for 
vibration analysis with different mathematical difficulties in different cases. Many researches 
deal with the waves’ behaviors in structures such as propagation, transmission and reflection [30-
34]. Mei [35] studied the control and vibration problem for axial oscillations in rods. Mei et al. 
[36] solved the motion equations for free and forced vibrations of axially pre-loaded cracked 
stepped Timoshenko beam analytically. Mei [37] studied the free lateral vibration of an Euler-
Bernoulli beam with a mass at the tip. Mei and Sha [38] found an analytical solution for spatial 
structures which was in good agreement with experimental results. Mei [39] analyzed 
longitudinal vibrations of planar and L-shaped structures and designed an active controller for 
active discontinuities by using this method. 

In this work, the governing motion equation for longitudinal vibration of nanorods according to 
the nonlocal elasticity theory will be extracted first. Then, we will apply the wave method to this 
equation to derive the propagation matrix so the reflection matrix for arbitrary boundary 
conditions will be calculated. Finally, an analytical explicit closed-form equation to obtain the 
axial natural frequencies will be expressed. 

2. Nonlocal rod model for longitudinal vibration 

As reported by the Eringen’s nonlocal elasticity theory [2] the strain in all points of the structure 
affects the stress tensor of each particular point within the medium. The results of molecular 
dynamics validated the Eringen’s assumption. According to this theory, the relation of stress–
strain for homogeneous structures is: 

 
 ,nl l

ij ijV
d     x x V

 
(1) 

where nl
ij  and l

ij  are the nonlocal and local stress tensors respectively. The integration is 

defined over the whole volume V . The small-scale effects is considered in the nonlocal modulus 
 . The parameter   depends on x x  and   where  x x  is the distance between the points 

x  and x , and  0 /e a L   with a  and L  as the internal and external lengths (e.g. the distance 

of two carbon molecules bond and the nanorod length). 0e  is a constant coefficient which 

corresponds to the material. The function   is defined as:  

 
    12 2

0

.
, 2 L K

L
   


  

  
 

x x
x  (2) 

in which 0K  is the modified Bessel function. Because of the difficulty in applying Eq. (1), the 

following equivalent equation can be used [7]: 
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  2 2
01 ( ) :nl

ije a C     (3) 

where C  and   are the elasticity and strain tensors respectively. The double dot product is 
denoted by “:” in this equation . 2  is the Laplacian operator. For one-dimensional problems, the 
constitutive relation is obtained as:  

 2
2

0 2
1 ( ) nl

ij xxe a E
x

 
 
   

 (4) 

where E  is the Young modulus. The governing equation of motion for longitudinal vibration of 
nanorods is: 

 2

2

( , )
( )

lN u x t
mA x

x t

 


 
 (5) 

where ( , )u x t  and m  are the longitudinal displacement and mass density respectively. lN  is the 
axial force and is obtained as: 

 l l
xx

A

N dA   
(6) 

where A  is the area of cross section. Combining Eqs. (4) and (6) leads to:  

 2
2

0 2
( )

nl
nl lN

N e a N
x


 


 (7) 

By using Eqs. (4-7), equation of motion for free longitudinal vibration of nanorods will be 
obtained as:  

      4 2 2
2

0 2 2 2 2

, , ,
( ) 0

u x t u x t u x t
e a m E m

x t x t

  
  

   
 (8) 

When 0 0e a  , Eq. (8) reduces to the equation of motion for the classical rod. 

3. Wave approach  

3.1. Wave description and analysis of longitudinal vibrations in a classic rod [27] 

 The equation of motion for a longitudinally vibrating uniform classic rod is described by: 

 2 2

2 2

( , ) ( , )
0

u x t u x t
m E

t x

 
 

 
 (9) 

In the absence of the external forces, the homogeneous Eq. (9) has a solution that can be written 
as the sum of two longitudinal wave components as: 

  ( ) cl clik x ik x i t
clu x a e a e e     (10) 
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where a   and a   are the positive and negative travelling wave amplitudes respectively, clk  is 

the wavenumber and index cl  denotes the classic rod model. The wave number can be 
calculated by substituting Eq. (10) into Eq. (9) as: 

 /clk m E  (11) 

In the absence of discontinuities, the wave amplitudes along a uniform length of rod are related 
by (Fig. 1): 

 
0 0

0 0

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
clik xa x x F x a x

F x F x F x e
a x F x a x x

  
 

  

 
   

 
 (12) 

 
Fig. 1. Amplitudes of wave in two points of rod with distance x  

where ( ) ( ) ( ) clik xF x F x F x e     is the propagation matrix. The axial force ( , )clP x t  is: 

 
1 2

( , )
( , ) cl clik x ik x i tcl

cl

u x t
P x t EA EA ikC e ikC e e

x
      

 (13) 

Fig. 2 shows a common general boundary. The relation between incident a 
 and reflected a 

waves is:  
 a ra   (14) 

For each general boundary (Fig. 2) the reflection matrix r  can be obtained by applying the 
equilibrium equation at the boundary: 

 
TP K u   (15) 

Substituting Eqs. (10) and (13) in Eq. (15) results into, 

  Ta a iK a a        (16) 

in which /T T clK K EAk  is the dimensionless stiffness. 

 
Fig. 2. General boundary 
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Rearranging Eq. (16) and considering Eq. (14) yields to: 

 
  

1

1
T

T

iK
r

iK

 
   

 (17) 

When the boundary is clamped, TK  becomes very large ( TK  ) and thus [ 1]r   . For free 

boundary condition, 0TK   and then [1]r   

 
Fig. 3. (Nano-Classic) rod with spring boundary conditions 

Fig. 3 shows a classic rod. a   and b   are the incident waves at the boundaries A  and B  
respectively and a   and b   are the corresponding reflected waves. The incident and 
corresponding reflected waves at the boundaries A  and B  are denoted by a   and b 

respectively. According to Eqs. (12) and (14), we have ( )b F L a   and ( )a F L b   for 

propagation relations and Aa r a    and  Bb r b   for reflection relations.  Rewriting these four 

equations in the matrix form leads to:  

 1 0 0

( ) 0 1 0
0

0 1 0 ( )

0 0 1

A

B

ar

F L a

F L b
r b









  
                

   (18) 

To have a nontrivial solution, the determinant of Eq. (18) should be equal to zero so the 
eigenvalue equation will be obtained analytically as:  

   2( ) 1 0A BF L r r    (19) 

By substituting ( )F L  from Eq. (12) and setting 1Ar    and 1Br   for clamped- free boundary 

conditions, Eq. (19) reduces to: 

 2 1 0clik Le    (20) 

The eigenvalue equation then becomes: 
 (2 1)

, 1,2,...
2ncl

n
k L n

   (21) 

By defining the dimensionless frequency as: 
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 /L m E  (22) 

Substituting Eq. (11) into Eq. (21) yields to: 

 (2 1)
, 1,2,...

2ncl

n
n

    (23) 

and for clamped-clamped boundary conditions, by substituting ( )F L  from Eq. (12) and setting 

1, 1A Br r     for clamped- clamped boundary condition Eq. (19) reduces to: 

 2 1 0clik Le    (24) 

The eigenvalue equation will then be: 

 , 0,1,2,...
nclk L n n   (25) 

Finally by substituting the wave number clk  form Eq. (11) into Eq. (25), the natural frequencies 

simplify to: 

 , 1,2,...
ncl n n    (26) 

3.2. Wave description of nanorod  

To solve free longitudinal vibration Eq. (8) for any given arbitrary boundary conditions we use 
the method of separation of variables which is:  

 ( , ) ( ) ( )nau x t U x G t  (27) 

( )U x  and ( )G t are the displacement and time terms respectively and Eq. (26) can be written as: 

  ( ) ( )
1 2 1 2( , ) na na n naik x ik x i k ax t i k x ti t

nau x t D e D e e D e D e           (28) 

where nk  and   are the wave number and natural frequency respectively and the index na  

denotes the nano model. The above equation can be written as: 

   1 2( , ) , ,na naik x ik xi t
nau x t a a e a D e a D e         (29) 

in which 1
naik xa D e   and 2

naik xa D e   represent positive-going and negative-going amplitudes 

by velocity ( / )nak  respectively. By substituting Eq. (28) into Eq. (8) we have: 

 2

2 2
0( )na

m
k

E m e a







 (30) 

The axial force ( , )naP x t  is: 

 
1 2

( , )
( , ) na naik x ik x i tna

na

u x t
P x t EA EA ikC e ikC e e

x
      

 (31) 

Eqs. (28) and (31) can be written in the matrix form as: 
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 ( )

( )

U x a

P x a

 
 

 

  

         
      

 (32) 

in which 

 [1] [1]

[ ] [ ]ikEA ikEA

 

 

 

 

 

  
 (33) 

The propagation matrices F  is as defined in Eq. (12) respects to its own wave number nak  

which is defined in Eq. (30). By considering Eqs. (33) and (32), the Eq. (15) becomes: 

  Ta a K a a               (34) 

Therefore the reflection matrix Eq. (14) will become: 

 
T

T

K
r

K

 
 

 

 

 
   

   (35) 

Eq. (35) can be simplified to Eq. (17) that is determined for classic rods. 

4. Vibration analysis 

In this section, the natural frequency equations for the two cases of arbitrary boundary conditions 
will be derived by combining the propagation and corresponding reflection matrices in each case. 
This equation has closed-form solution for any arbitrary boundary condition and special cases 
such as clamped-clamped and clamped-free boundaries. 

4.1. General solution 

Eq. (19) is the general solution form which is derived in the previous section for a classic rod 
model. It is also applicable for nanorods. To use the above equation, it is necessary to consider 

the appropriate nano-functions of wave number nak  and reflection matrix which are obtained in 

Eqs. (33) and (35) respectively. Without loss of generality for spring-spring boundary conditions, 
this equation will be simplified for the cases of clamped-spring and free-spring boundary 
conditions. At the next subsection, the two special cases of clamped-free and clamped-clamped 
will be considered. 

Once the left side is clamped, it means 1Ar    and the right side has an arbitrary boundary 

condition. Eq. (19) will be rewritten as: 

 2( ) 1 0BF L r      (36) 

By substituting ( )F L  from Eq. (12) and Br  from Eq. (17), Eq. (36) becomes: 

 2 1

1
naik L T

T

iK
e

iK
 

 


   
(37) 
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Therefore, the solution for the clamped-arbitrary boundary is: 

 2
1

2

1 1
cos

2 1
T

na
T

K
k L

K
  

   
   

(38) 

Finally, the dimensionless frequencies for the clamped-arbitrary boundary condition will be 
driven as: 

 

  

2
1

2

22 2
10

2

1
cos

1

1
4 cos

1

T

T
na

T

T

K
K

e a K
L K





    
            

 
(39) 

The first dimensionless natural frequency versus the dimensionless stiffness TK  for different 

nonlocal parameters 0 /e a L are shown in Fig. 4. Also, Fig. 5 shows the first three natural 

frequencies for the nonlocal parameter  0 / 0.5e a L   versus the dimensionless stiffness TK . 

 

Fig. 4. The first dimensionless frequency vs. the dimensionless stiffness TK  for different nonlocal parameters 

0 /e a L  in clamped-arbitrary boundary conditions 
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Fig. 5. The first three natural frequencies for the nonlocal parameter 0 / 0.5e a L   vs. the dimensionless stiffness

TK  in clamped-arbitrary boundary conditions 

Once the right side is free, it means 1Ar   and the right side has an arbitrary boundary condition 

and Eq. (19) will be reframed as: 

 2( ) 1 0BF L r    (40) 

By substituting ( )F L from Eq. (12) and Br  from Eq. (17), Eq. (40) becomes: 

 2 1

1
naik L T

T

iK
e

iK
 




 (41) 

So the solution for free-arbitrary boundary conditions is: 

 2
1

2

1 1
cos

2 1
T

na
T

K
k L

K
  

   
 (42) 

Finally, the dimensionless frequencies of Eq. (41) for free-arbitrary boundary condition will be 
driven as: 

 

 

2
1

2

22 2
10

2

1
cos

1

1
4 cos

1

T

T
na

T

T

K
K

e a K
L K





 
   
            

  
(43) 
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The variations of the first dimensionless natural frequency versus the dimensionless stiffness TK  

for different nonlocal parameters 0 /e a L are shown in Fig. 6. Fig. 7 shows the first three natural 

frequencies for the nonlocal parameter 0 / 0.5e a L   versus the dimensionless stiffness TK . 

 

Fig. 6. The first dimensionless frequency vs. dimensionless stiffness TK  for different nonlocal parameters 0 /e a L  

in free-arbitrary boundary conditions 

 

Fig. 7. The first three natural frequencies for nonlocal parameter 0 / 0.5e a L   vs. the dimensionless stiffness TK  

in free-arbitrary boundary conditions 
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4.2. Special cases 

In this section, clamped-clamped and clamped-free boundary conditions are considered as 
special cases. For clamped-clamped boundaries, the reflection matrices at A and B became 

1A Br r    so Eq. (19) simplifies to: 

 
2 1 0naik Le    (44) 

An explicit exact closed-form equation for the clamped-clamped case will be obtained as, 

 
, 1,2,...nak L n n   (45) 

By substituting nak  from Eq. (30) the dimensionless frequencies for clamped-clamped boundary 

becomes: 

 

 2 2
0

, 1,2,...
1 / ( )

nna

n
n

e a L n




  


 

(46) 

In Fig. 8(a) the first three dimensionless frequencies versus the nonlocal parameter 0 /e a L for 

clamped-clamped boundary conditions are shown. 

For clamped-free boundaries, the reflection matrices at A and B become 1Ar    and 1Br  . 

Therefore, Eq. (19) simplifies to, 

 2 1 0naik Le    (47) 

The closed-form eigenvalue equation for clamped-free boundary condition is then obtained:  

 (2 1)
, 1,2,...

2na

n
k L n

   (48) 

which yields to, 

 

   2 2

0

(2 1)( / 2)
, 1,2,...

1 / (2 1)( / 2)
nna

n
n

e a L n






  

 
 

(49) 

The first three dimensionless frequencies versus the nonlocal parameter 0 /e a L
 are shown in Fig. 

8(b).  

In Table 1 the dimensionless natural frequencies for different nonlocal parameters are calculated 
from the wave approach and they are compared with the results from Aydogdu [6] for clamped-
clamped boundary conditions. 
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Fig. 8. The first three dimensionless frequencies vs. the nonlocal parameter 0 /e a L  for (a) C-C boundary condition 

(b) C-F boundary condition 

 

 

Table 1. The dimensionless natural frequencies for different nonlocal parameters, a comparison 
between Aydogdu [6] and the wave approach for C-C boundary conditions 

 

  

0 / 0.1e a L   0 / 0.3e a L   0 / 0.5e a L   0 / 0.7e a L   

Aydogdu 
Wave 
approach 

Aydogdu 
Wave 
approach 

Aydogdu 
Wave 
approach 

Aydogdu 
Wave 
approach 

1 2.9972 2.9972  2.2862 2.2862 1.6871 1.6871 1.3004 1.3004 

2 5.3201 5.3201 2.9446 2.9446 1.9058 1.9058 1.3930 1.3930 

3 6.8587 6.8587 3.1426 3.1426 1.9564 1.9564 1.4124 1.4124 

4 7.8248 7.8248 3.2219 3.2219 1.9751 1.9751 1.4194 1.4194 

5 8.4356 8.4356 3.2607 3.2607 1.9840 1.9840 1.4227 1.4227 

10 9.5289 9.5289 3.3147 3.3147 1.9960 1.9960 1.4271 1.4271 

100 9.9949 9.9949 3.3331 3.3331 2  2  1.4286 1.4286 

 
In Table 2 the dimensionless natural frequencies for different nonlocal parameters are calculated 
from the wave approach and compared with the results from Aydogdu [6] for clamped-free 
boundary conditions. 
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Table 2. The dimensionless natural frequencies for different nonlocal parameters, a comparison between Aydogdu 
[6] and the wave approach for C-F boundary conditions. 

 

  

0 / 0.1e a L   0 / 0.3e a L   0 / 0.5e a L   0 / 0.7e a L   

Aydogdu 
Wave 
approach 

Aydogdu 
Wave 
approach 

Aydogdu 
Wave 
approach 

Aydogdu 
Wave 
approach 

1 1.5518 1.5518 1.4209 1.4209 1.2353 1.2353 1.0569 1.0569 

2 4.2628 4.2628 2.7213 2.7213 1.8411 1.8411 1.3671 1.3671 

3 6.1767 6.1767 3.0684 3.0684 1.9381 1.9381 1.4055 1.4055 

4 7.3981 7.3981 3.1900 3.1900 1.9677 1.9677 1.4167 1.4167 

5 8.1440 8.1440 3.2444 3.2444 1.9803 1.9803 1.4213 1.4213 

10 9.4819 9.4819 3.3127 3.3127 1.9956 1.9956 1.4269 1.4269 

100 9.9949 9.9949 3.3331 3.3331 2  2  1.4286 1.4286 

 
Tables (1) and (2) show the same results for Aydogdu [6] solution and the wave approach and 
also Eqs. (47) and (50) are in full agreement with the existing method [6]. 

5. Discussion and conclusion 

Figures (4-7) show that by increasing the dimensionless stiffness TK  for different nonlocal 

parameters, natural frequencies increase and go from clamped-free to clamped-clamped and from 
free-free to clamped-free boundary conditions. It can be concluded from Fig. 5 and Fig. 7 that 
increasing the boundary stiffness has more effect on the lower natural frequencies. The increase 
in natural frequencies due to increasing the arbitrary boundary stiffness, for lower stiffness is 
more than for other amounts of the boundary stiffness. By decreasing the nonlocal parameter 

0 /e a L, the natural frequencies become closer to each other. 

As shown in Eqs. (46) and (49) and also Fig. (8), by increasing the nonlocal parameter 0 /e a L, 

the natural frequency will decrease and the frequencies have the same amounts as the classic 
model in Eqs. (23) and (26) when this term vanishes. Increasing the nonlocal parameter causes 
more decrease in the natural frequencies for higher frequencies. In addition, natural frequencies 
become closer to each other by increasing the nonlocal parameter. According to Fig. 8, in all 
natural frequencies there is an inflection point that in higher modes occurs in lower nonlocal 
parameters. This means decreasing the natural frequencies by increasing the nonlocal parameter 
has more speed after passing a critical amount of nonlocal parameter. Tables (1) and (2) show 
that the natural frequencies become closer for clamped-clamped and clamped-free cases in 
higher modes and in each mode they are independent from the nonlocal parameter. 

It has been shown that by considering vibrations as moving waves in structures, a new viewpoint 
for vibrational analysis is opened. Combining the derived matrices for propagation and 
reflection, leads us to a pithy analytical approach to study longitudinal vibration of nanorods. 
This method is easily applicable for any arbitrary boundary condition. Simpler mathematical 
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operations in such approach is one of its noticeable benefits as compared with the other existing 
methods.  
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