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In the present paper, the dynamical snap-through of a preloaded 
micro-sensor is analyzed. This behavior is linked to analyzing 
bifurcation behavior of the micro structure in a suitable framework. 
Effects of the axial pre-stress and the excitation amplitude on the 
stability and sensitivity of the sensor are also discussed. In order to 
capture the size effects, the modified strain gradient theory is 
employed on an Euler-Bernoulli beam. Applying the Hamilton’s 
principle and utilizing the Galerkin’s method, the nonlinear 
governing equation for the vibration is obtained. The method of 
multiple scales (MMS) is then used to obtain the frequency-response 
equation and by using a mathematical approach, the bifurcation 
points and the jump heights of the micro-resonator are analyzed. The 
calculated analytic equation for frequency response, provides the 
conditions for obtaining the range of snap-through and studying the 
effects of different designing parameters on the multivaluedness 
range. The jump height of the micro-resonator is proposed to use as 
a criterion for sensing purposes. The simulations are illustrated and 
the results are verified with similar works. 
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1. Introduction 
Unique properties and characteristics have made Micro-electro-mechanical systems (MEMS) 
suitable for devices such as micro-resonators [1], micro-actuators [2], bio-MEMS [3] and so on. 
The usage of beam structures in MEMS has also been gaining widespread popularity among 
scholars. One such micro-electromechanical device in which beam structures have been 
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frequently used is micro-sensor in which the information is gathered from the environment by 
measuring thermal, mechanical or magnetic phenomena. The electronic part then processes this 
information and responds by moving, positioning, filtering or performing some other mechanical 
action. Modeling and simulating micro-beams can be a challenging task, since they are scale free 
and the small-scale effect in their mechanical properties cannot be captured by classical beam 
theories. For example, it was shown by Wang and Hu [4] that classical beam theories are 
incapable of predicting the changes in phase velocities of wave propagation in a carbon nanotube 
with large wavenumber. In order to solve these inconsistencies, many theories of non-classical 
higher order continuum have been established to consider the size effect. In such theories, some 
higher-order stresses are usually taken into account besides the classical stress. Furthermore, in 
higher order theories, there exist material length-scale parameters in addition to the classical 
material constants in classical continuum theories. 

One such higher order theory that takes the size effect into account is the couple-stress theory 
presented by Koiter [5] and Mindlin and Tiersten [6]. There are two additional higher-order 
material parameters besides the classical Lame constants in the constitutive equations of this 
theory. The free vibration behaviour of cellular solids was studied by Su and Liu [7] using the 
couple-stress theory. The modified couple stress theory was suggested in 2002 by Yang et al. [8]. 
This theory which has only one higher-order material constant was used by Asghari et al. [9] to 
obtain a nonlinear Timoshenko beam formulation.  
Another popular higher-order theory that considers small-scale effects is the modified strain 
gradient theory which was presented by Lam et al. [10]. Many researchers have used this theory 
to study various aspects of micro/nano structures behavior. For example, based on the strain 
gradient theory, Kahrobaiyan et al. [11] developed a nonlinear size-dependent Euler Bernoulli 
beam model. In another article, the size-dependent nonlinear forced vibration of an Euler-
Bernoulli micro-beam based on the modified strain gradient theory was investigated by 
Vatankhah et al. [12]. 

The resolution of micro-sensors is measured by their minimum detectable frequency shifts which 
are limited by the onset of multivaluedness of the frequency responses. These frequency shifts 
which are also known as jumps, occur at bifurcation points. It was Poincare who first introduced 
the concept of bifurcation to show how some system features such as the number of the solutions 
and their type change qualitatively when one or more system parameter change[13]. Lin and 
Zhao [14] investigated the bifurcation behavior of a one degree of freedom NEMS electrostatic 
torsional varactor. In another article, Mobki et al. [15] analyzed the dynamical and bifurcation 
behavior of a capacitive micro-beam suspended between two fixed electrically conductive plates 
and subjected to electrostatic forces. Kacem et al. [16] tested a four-bifurcation-point 
micromechanical resonator which was actuated electrostatically. 

In the present paper, the governing equation for the vibration of a damped clamped-clamped 
micro-beam is derived by taking the Poisson’s effect into consideration and the frequency-
response equation is obtained. Then by using a mathematical approach, the bifurcation points of 
the system are determined and corresponding values of jump-heights are calculated for different 
values of excitation amplitude and pre-stress load. Also, the effect of length-scale parameters on 
the bifurcation characteristics of the vibrating micro/nano beam is illustrated. 



�6�����6�H�S�H�K�U�L���H�W���D�O���������-�R�X�U�Q�D�O���R�I���7�K�H�R�U�H�W�L�F�D�O���D�Q�G���$�S�S�O�L�H�G���9�L�E�U�D�W�L�R�Q���D�Q�G���$�F�R�X�V�W�L�F�V������������������������������������

21 
 

2. The governing equations 
The stress-strain relation in the classical linear theory of elasticity is given by 

 
ij ij ij ijσ λ δ 2μ .�H �H� ��  (1) 

where λ and �Nare Lame’s coefficients and stress and elastic strain tensors are denoted by �Tand
ε , respectively. 

Assuming a linear elastic material with infinitesimal deformations, the stored strain energy �X�P  
for a continuum that occupies region �Ë based on the modified strain gradient theory is expressed 
as  [10]: 

 
�� �� �� ���� ��1 1 s s

m ij ij i i ijk ijk ij ij
1u σ ε p γ τ η m χ dv,
2 �I

� �� �� ���³  
(2) 

where 

 
i mm,i ,γ ε�  (3) 

 �� �� �� �� �� �� �� �� �� ��1
ijk jk,i ki, j ij,k ij mm,k mk,m jk mm,k mi,m ki mm, j mj,m

1 1 1η ε ε ε δ ε 2ε δ ε 2ε δ ε 2ε ,
3 15 15

�ª �º� �� �� �� �� �� �� �� ���¬ �¼

 

(4) 

 �� ��s
ij i , j j,i

1χ θ θ ,
2

� ��  (5) 

 �� ���� ��i i

1θ curl ,
2

u�  (6) 

ui, iγ and θi represent the components of the displacement vector u , the dilatation gradient 

vector γ , and infinitesimal rotation vector θ , respectively and 
s
ijχ is the symmetric part of the 

curvature tensor. 

Considering a linear isotropic elastic material, the relation between components of the stress and 
the kinematic parameters is described by 

 2
i 0 ip 2μl γ ,�  (7) 

 �� �� �� ��1 12
ijk 1 ijkτ 2μl η ,�  (8) 

 s 2 s
ij 2 ijm 2μl χ ,�  (9) 

in which ip and �� ��1
ijkτ  are the work-conjugates to mm,iε and �� ��1

ijkη  respectively, s
ijm  is the symmetric part 

of the couple-stress tensor and �O��, �O����and���O�� are material length scale parameters related to 
dilatation gradients, deviatoric stretch gradients and rotation gradients, respectively [10]. 

Schematics for a clamped-clamped Euler Bernoulli beam with preload and transverse distributed 
load is shown in Fig 1. 
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Fig 1. Schematics of a preloaded clamped-clamped micro-beam with distributed transverse loading. 

According to the Euler-Bernoulli beam theory, the displacement field can be described as: 
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,
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(10) 

 
2 0,�X �  (11) 

 �� ��3 , .�X �Z �[ �W�  (12) 

in which �X and �Z are the axial and vertical displacements, respectively. 

Based on von Kármán assumption, the nonlinear strain component can be written as 

 22

11 2

1 .
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�[ �[ �[
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 (13) 

Now assuming that the stress is uniaxial, one can write: 
 

22 33 11,�Y�H �H �H� � ��  (14) 

where �Yis the Poisson’s ratio. Many other works, e.g. [17, 18]  neglect the Poisson’s effect. But 
it is included as an ad-hoc assumption in this research [19]. 

Using Eqs. (3) to (6), the non-zero components of kinematic parameters and higher order stresses 
are: 
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Applying initial axial compressive preload �D�&  on the beam with constant cross section area �$, 

length �/, moment inertia �,��and Young modulus �(, taking the effect of �D�&  into consideration, one 
may write the total strain energy based on Eq. (2) as [20]: 
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where  
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The virtual work due to other external loads is given by: 
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where �T��is the distributed transverse force. 

The kinetic energy of the beam can then be written as 
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in which, �Uis the mass per volume. The total energy can be written in the variational form as 
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Applying the Hamilton’s principle as below, the governing equation can be formed. 
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It should be noted that in Eq. (34) the parameters �P����and �P����are defined as 0�P �$�U� and 2�P �,�U� 
respectively.  

Applying the clamped-clamped boundary conditions, the non-dimensional form of the governing 
equations of the nonlinear Euler-Bernoulli beam can be obtained [21]: 
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It is noted that �&�G��denotes the coefficient of viscous damping. 

For these governing equations, the classical boundary conditions are defined as: 
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0,�;

�;
�:

� 

� 
�  (37) 
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(38) 
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while the non-classical boundary conditions are expressed as follows: 
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(40) 
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(41) 

Neglecting Poisson’s effect and nonlinear terms, Eqs. (35) to (41) reduce to those presented by 
Akgöz and Civalek [17]. 

Now, assuming
2

2 0�8
�W

�w
� 

�w
, the fourth order differential equation for the transverse motion of the 

beam can be formed by combining Eqs. (35) and (36). 
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1 22 2 2 4 6 2 , .�G

�: �: �: �: �: �:
�P �& �. �. �1 �4 �;

�; �; �; �;
�W

�W �W �W
�w �w �w �w �w �w

�� �� �� �� �� � 
�w �w �w �w �w �w �w

�c ��  (42) 

Where 
 1

2
2

0 0

1 1
2 �D�1 �: �G�; �1

�E
�� �c� ���³��  (43) 

3. Solution procedure 
The PDE obtained in Eq. (42) can be converted to a time dependent ODE by taking a proper 
mode shape which satisfies all the classic boundary conditions [22]. Assuming the resonator is 
subjected to a harmonic concentrated force �� �� �� ��, sin Ω�4�4 �; �.�W �W� where KQ is excitation 

amplitude, using �� �� �� �� �� ��,�: �; �W �; �:�I �W� , one can reach the time-dependent ODE by multiplying 
Eq. (42) by �Ë���;�� and integrating the resulting equation from 0 to 1. Doing so, the second-order 
duffing differential equation is obtained as 

 �� ��2 2 2 3 2
0 sin Ω ,�4�: �: �: �: �.�H �K �Z �H �D �H �W�� �� �� � ������  (44) 

 Definitions of parameters �., �— and �&�� in terms of parameters �E��, �&�G, �1�D and the length-scale 
material parameters has been expressed in Appendix A. 
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Multiple scales method is then applied; hence the solution is considered to be a function of two 
independent variables instead of one. The underlying idea of this method is to represent the 
response as a function of multiple time scales instead of a single variable [23]. 

Here, we express the solution by the following expansion  

 �� �� �� �� �� �� �� ��2
0 0 1 2 1 0 1 2 2 0 1 2, , , , , , , ,�: �: �7 �7 �7 �: �7 �7 �7 �: �7 �7 �7�W �H �H �H� �� ��  (45) 

where 0�7 �W� , 1 ε�7 �W� , 2
2�7 �W�H�  and �His a small parameter that measures the amplitude of 

oscillation. 

In order to study primary resonances of a vibrating micro/nano-beam, a detuning parameter �ê is 
introduced which describes how close the excitation frequency is to the natural frequency 0�Z: 

 
0Ω ,�Z �H�V� ��  (46) 

Now, by substituting Eq.(45) in Eq.(44) , one can obtain the following system of linear equations 
based on different powers of �Ý 

 �� ��0 2 2
0 0 0 0: 0,�2 �' �: �:�H �Z�� �  (47) 

 �� ��1 2 2
0 1 0 1 0 1 0: 2 ,�2 �' �: �: �' �' �:�H �Z�� � ��  (48) 

 �� �� �� ��2 2 2 2 3
0 2 0 2 0 1 1 0 2 0 1 0 0 0 0: 2 2 sin Ω .�4�2 �' �: �: �' �' �: �' �' �: �' �: �' �: �: �.�H �Z �K �D �W���� � �� �� �� �� ��  (49) 

The general solution of �: �� can be written as: 

 �� �� �� �� �� �� �� ��0 1 0 0 1 0 0exp exp ,�: �$ �7 �L �7 �$ �7 �L �7�Z �Z� �� ��  (50) 

where �#�§ is the complex conjugate of �$. 

Now, by substituting �: �� from Eq. (50) in Eq (48), it is found that any particular solution of 

Eq.(48) has a secular term containing the factor �� ��0 0exp �L �7�Z�r  unless: 

 
1 0.�' �$ �  

(51) 

Elimination of the secular terms in Eq. (49) gives: 

 2
0 03 2 0.�L �$ �$ �$ �L �$�K �Z �D �Z�c�� �� �  (52) 

In order to eliminate the secular terms in Eq. (52) , �$ is written in polar form as below: 

 �� ��1 .
2

�$ �D�H�[�S �L�T�  (53) 

Substituting Eq. (53) in Eq. (52), separating the real and imaginary parts and defining

2�7�J �V �T� �� , the set of autonomous equations is obtained: 
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0

1 sin ,
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�4�.
�D �D�K

�Z
�J�c� �� ��  (54) 

 
3

0 0

3 1σ cos .
8 2

�4�.
�D �D �D

�D
�Z �Z

�J �J�� ���c�  (55) 

Now by considering the steady-state condition for the motion ( 0�D �J�c� �c� ), the system of 
equations for the primary resonance vibration takes the form of: 
 

0

1 sin ,
2

�4�.
�D

�Z
�K �J�  (56) 

 

0 0

33 1σ cos .
8 2

�4�.
�D �D

�Z
�D

�Z
�J�� � ��  (57) 

By squaring and adding Eq. (56) and Eq. (57), the frequency-response equation is obtained as: 

 2 2
2 2

0 0

2
2

3 . .
8 4

�4�.
�D �D

�Z �Z
�D

�K �V
�§ �·�§ �·
�¨ �¸�� �� � �¨ �¸�¨ �¸�© �¹�© �¹

 (58) 

Bifurcation points of the nonlinear dynamic system can be determined by investigating the sign 
of the discriminant of Eq. (58) Hence, forming the discriminant of Eq. (58) and setting it equal to 
zero, one can find the bifurcation points. The mathematical procedure has been carried out in 
Appendix B. 

Now, by solving Eg. (B.3) numerically, one can obtain the two bifurcation points. 

 
Fig 2. Frequency-response curve for primary resonance Vibration. 

Fig 2 depicts the frequency-response curve for a nonlinear system at primary resonance. The two 
bifurcation points of the system are A and C. As the frequency starts to increase from the 
beginning, the response amplitude rises slowly until it reaches point A. Point A is the point 
where the number of solutions changes and the multivaluedness region begins. Now, if the 
frequency is further increased, a jump-down from point A to point B takes place with a shift in 
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the response amplitude. Now if the analysis is started from the end, by decreasing the frequency, 
the response amplitude increases slightly until point C is reached. Again, point C is the 
bifurcation point and therefore there will be a jump up from C to D. The portion of the curve 
between points A and C is multivaluedness region and cannot be produced experimentally. 

4. Results and discussion 
It is assumed that the micro-beam is made of Epoxy and its geometrical and material 
specifications are [24, 25]: �(=1.44 GPa, �!=1200 kg/m3, �—=521.7 MPa, ��=0.38 and �O��� �O��� �O��� 17.6 
µm. Therefore, the effect of various parameters on the stability and bifurcation behavior of the 
system can be illustrated numerically. 

The effect of preloading stress on the values of bifurcation points is illustrated in Fig 3. It is seen 
that as the preload increases, the values of the first and second bifurcation points also rise. This 
indicates that preloading has hardening effect and shifts the multivaluedness range to higher 
frequencies. Furthermore, it is observed that increasing the excitation amplitude (�. �4) increases 
the value of the bifurcation points, but doesn’t have a significant effect on the slope of the 
curves. 

 
Fig 3. Effects of Preload on the values of the first and second bifurcation points. 

Fig 4 illustrates how the range of the multivaluedness region of the micro-resonator changes with 
the pre-stress load. It is observed that as the axial pre-stress rises, the length of the 
multivaluedness region of the micro-resonator increases, meaning that for a wider range of 
frequencies, multivalued response for the dynamical system exists.  The same can be said about 
increasing the excitation amplitude of the system.   

The figure shows the length of multivaluedness range for a limited range of preload (�0�Ô) in each 
cases and they are not plotted for same range of values of preload. It is due to that 
multivaluedness is obtained for certain values of the parameters. As it is seen that by increasing 
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the excitation amplitude, multivaluedness occurs for smaller range of preload. The same 
behavior is observed in the following figures. 

 
Fig 4. The effects of excitation amplitude (KQ) on the multivalued region range for the case of primary resonance. 

 
Fig 5. The effects of excitation amplitude (KQ) on the Jump-down height for the case of primary resonance. 

Figure 5 represents the jump-down behavior of the micro-resonator as the pre-stress load is 
changed. The jump height can be seen as a means to measure the sensitivity of the micro-sensor. 
It is figured out that as the pre-stress load of the system is increased, the jump-down height 
increases. The effect of excitation can also be observed on the jump-down height of the micro-
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sensor. It is understood that higher excitation amplitude leads to a higher jump-height and hence 
a more sensitive resonator. 

Fig 6 illustrates the same effects on the jump-up height of the micro-sensor when point C is 
reached and the frequency is further decreased. It is seen that the jump-up height rises while the 
axial preload is being increased. It is also seen that more sensitivity can be achieved by 
increasing the amplitude of excitation for a primary resonance micro-sensor. 

 
Fig 6. The effects of excitation amplitude (KQ) on the Jump-up height for the case of primary resonance. 

Furthermore, the simultaneous effect of preload and excitation amplitude on the jump-down 
height at the second bifurcation point is illustrated in Fig 7. By observing Fig 7 it is possible to 
find the appropriate values for the designing parameter �1�D in order to have desired immediate 
action at the external loading parameters with the certain accuracy. 

Also, the effect of the length scale parameters �O����,�O����and �O�� on the length of the multivalued region 
is illustrated in Fig 8, Fig 9 and Fig 10, respectively. It is seen that increasing the length scale 
parameters reduces the length of the multivalued region, though not changing the slope. It is also 
observed that length scale parameters related to the deviatoric stretch gradients (�O��) and rotation 
gradients (�O��) have more dominant impact on the length of the multivalued region compared to 
the one corresponding to dilatation gradients (�O��). 
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Fig 7. Simultaneous effect of Na and KQ on the jump-down height of primary resonance. 

 
Fig 8. Effect of �O�� on the multivalued region length of primary resonance. 
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Fig 9. Effect of l1 on the multivalued region length of primary resonance. 

 
Fig 10. Effect of �O�� on the multivalued region length of primary resonance. 

The dimensionless multivaluedness region range and jump heights of a microbeam are listed in 
Table 1. It is clearly seen that each length-scale parameter has a significant influence on the 
response of the micro/nano beam. It is also understood from Table 1 that the modified strain 
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gradient theory predicts the range of the multivaluedness region and the jump heights to be 
smaller in comparison to the modified couple stress and the classical beam theories. The Jump-
Down height obtained by the modified strain gradient theory is about half the value obtained by 
the modified couple stress theory. Hence, it is concluded that the results obtained by the 
modified couple stress theory and the classical theory are not suitable for micro/nano beams. 

Table 1. Dimensionless multivalued region range and jump heights for different higher order beam theories. 
Beam Theory Classical Theory 

(�O��� �O��� �O��� 0) 
Modified Couple Stress 

Theory (�O��� �O��� 0 , 
�O��� ���������� 

Modified Strain 
Gradient Theory 

(�O��� �O��� �O��� 17.6 µm) 

Multivaluedness Region 
Range 

58.081 31.941 4.59 

Jump-Up Height 0.005291698 0.00430873 0.00355862 

Jump-Down Height 0.01759208 0.01362083 0.00721766 

 

The nonlinear response of a clamped-clamped beam which is under a harmonic load of a 
frequency near the undamped natural frequency is studied by Crespo da Silva [26]. For a 
numerical comparison, a micro-beam was considered with geometrical and material 
specifications similar to that of Crespo da Silva. it is seen that the frequency-response curve is in 
a good agreement with the results obtained by Crespo da Silva [26]. The comparison is depicted 
in Fig 11. 

��
Fig 11. Comparing the results of the presented study with Crespo da Silva’s (1998) 

5. Conclusion 
Unstable dynamical behavior of the mechanical parts of a micro-sensor is one of the major 
challenges in designing MEMS instruments. Since the nonlinear forced vibration of a micro-
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beam is size dependent, a nonlinear formulation for the transverse motion of an Euler-Bernoulli 
micro/nano-beam based on the modified strain Gradient theory is obtained. Multiple Scales 
Method (MMS) is then applied for solving the nonlinear ODE for W and acquiring the response 
of the system and a mathematical framework is utilized to find bifurcation points of the dynamic 
system. Effects of important parameters such as excitation amplitude and pre-stress load on the 
range of the multivaluedness region and the sensitivity is analyzed. It is observed that as the pre-
stress load increases, the range of the multivalued region and the sensitivity also rise. It is further 
seen that increasing the excitation amplitude (KQ), increases both the multivalued region range 
and the sensitivity. Also, increasing the length-scale parameters have a softening effect on the 
response of the system, therefore reduce the range of frequencies for which multiple responses 
exist. Investigating the effects of such parameters on the dynamic and bifurcation behavior of the 
micro-sensor enables us to reach an efficient design for desired sensitivity purposes. 

Appendix A. 
 Implementing Galerkin’s method with a proper mode shape function which satisfies the 
boundary conditions, a second order differential equation can be found which is of the following 
form: 

 
�� ��

¨
2 2 2 3 2

0 sin Ω ,�4�: �: �: �: �.�H �K �Z �H �D �H �W�� �� �� � ��  (A.1) 

which is a cubic duffing equation. 
In Eq. (A.1) the coefficients are defined as below: 
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Appendix B. 

A third order algebraic equation of the form 3 2 0�D�[ �E�[ �F�[ �G�� �� �� �  has a discriminant which can be 
obtained using the following formula: 

 2 2 3 3 2 24 4 27 18�E �F �D�F �E �G �D �G �D�E�F�G�� �� �� ��  (B.1) 

Now assuming the frequency- response equation can be written as: 
 2 2

2 2

0 0
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8 4
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�D �D

�Z �Z
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�K �V
�§ �·�§ �·
�¨ �¸�� �� � �¨ �¸�¨ �¸�© �¹�© �¹

 (B.2) 

the discriminant can be written as: 
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