Free vibration analysis of multi-cracked micro beams based on Modified Couple Stress Theory

Abbas Rahi a, Hamed Petroft b

a Assistant Professor, Mechanical & Energy Engineering, Shahid Beheshti University, A.C., Tehran, Iran
b Ph.D. Candidate, Faculty of Mechanical & Energy Engineering, Shahid Beheshti University, A.C., Tehran, Iran

ARTICLE INFO
Article history:
Received 17 July 2018
Received in revised form 5 September 2018
Accepted 23 November 2018
Available online 11 December 2018

Keywords:
Multi-Cracked,
Microbeam,
MCST,
Natural frequency.

ABSTRACT
In this article, the size effect on the dynamic behavior of a simply supported multi-cracked microbeam is studied based on Modified Couple Stress Theory (MCST). At first, based on MCST, the equivalent torsional stiffness spring for every open edge crack at its location is calculated; in this regard, the Stress Intensity Factor (SIF) is also considered for all open edge cracks. Hamilton’s principle has been used in order to achieve the governing equations of motion of the system and associated boundary conditions are derived based on MCST. Then the natural frequencies of multi-cracked microbeam are analytically determined. After that, the Numerical solutions have been presented for the microbeam with two open edge cracks. Finally, the variation of the first three natural frequencies of the system is investigated versus different values of the depth and the location of two cracks and the material length scale parameter. The obtained results express that the natural frequencies of the system increase by increasing the material length scale parameter and decrease by moving away from the simply supported of the beam and node points, in addition to increasing the number of cracks and cracks depth.

1. Introduction
Nowadays, because of the development of new technologies, approaches to design and research about small size structures have been increased more than ever. Micro and nanostructures such as microbeams are one of the most common important components, which are used in the micro-
electromechanical systems (MEMS) such as microswitches. [1, 2] There are several studies on microbeams using the size-dependent theories. Kong et al.[3] showed the size effect of microbeam in the natural frequency of the system. They used Euler-Bernoulli model for the beam and analytically solved the dynamical problem of the system using Modified Couple Stress Theory (MCST). Park and Gao[4] also used MCST with Euler-Bernoulli model for bending of a cantilever beam. Dado and Abuzeid [5] investigated about coupled transverse and axial vibratory behavior of cracked beam with a concentrated mass and rotary inertia at end of the beam. Al-Basyouni et al. [6] studied vibration analysis of Functionally Graded (FG) microbeams based on MCST. Li et al.[7] investigated on bending, buckling and vibration analysis of axially FG a Euler-Bernoulli microbeam based on the nonlocal strain gradient theory. In other words, the scale parameter changes during the length of the beam. They derived the equations of motion from Hamilton’s principle and for solving the equations used a Generalized Differential Quadrature Method (GDQM). The influences of power-law variation and size-dependent parameters have also been investigated on the bending, buckling and vibration behaviors of axially FG beams. Shafiei et al. [8] obtained equations for transverse vibration of rotary tapered microbeam. Zhang and Wang[9] showed exact controllability and observability of a microbeam with the boundary-bending moment. Fang et al. [10] presented governing equations of three-dimensional free vibration of rotating FG microbeams based on MCST using Euler-Bernoulli beam theory. Babaei et al.[11] also investigated on free vibration analysis of an FG microbeam based on MCST using Euler-Bernoulli model and considering thermal effect. Recently, Taati and Sina[12] utilized Multi-objective optimization of distribution parameter of FGM, thickness and aspect ratio in a microbeam embedded in an elastic medium in order to minimize and maximum deflection, maximum stress and mass and maximizing values of natural frequency and critical buckling load.

On the other hand, the problem of the damage of structures cannot be ignored. One of the most important faults in a structure is the existence of cracks, especially in small structures. Often, in research, crack is modeled with a torsional spring and the effect of crack existence is investigated on the natural frequency of vibrational systems and component’s life. Some research has examined the impact of just one crack in the system. Akbarzadeh and Shariati [13] presented analytical solutions of a critical buckling load and the post-buckling response for an open edge cracked microbeam with simply-supported boundary conditions based on MCST with Euler-Bernoulli’s model. They also studied a cracked Timoshenko Nano-beam and considered coupled effects between the axial force and bending moment by two equivalent springs.[14] Alsabbagh et al.[15] introduced simplified formula for the stress correction factor in terms of the crack depth to the beam height ratio. Panigrahi and Pohit [16] researched about the effect of a crack on the nonlinear vibration of rotating FGM cantilever beam having large motion based on the Timoshenko’s beam model. Soltanpour et al.[17] investigated equations of free transverse vibration of an FG cracked nano-beam resting on elastic medium with Timoshenko’s model with simply supported-simply supported (SS) and Clamped-Clamped (CC) boundary conditions. Akbas[18] presented analytical and numerical solutions for free vibration of a cracked FG cantilever microbeam based on MCST with Euler-Bernoulli’s model. Huyen and Khiem [19] investigated frequency analysis of a cracked FG cantilever beam. Behera et al.[20] investigated the influence of crack incline on first three mode shapes of a cantilever beam. Moreover, they verified numerical solutions with experimental test results. Rahi [21] investigated the lateral vibration of a cracked simply-supported microbeam based on MCST. He presented four models
for Stress Intensity Factor (SIF) and compared them in his numerical results and showed the
effect of the crack depth ratio η, the crack location L_c and material length scale parameter l
on the equivalent torsional stiffness of the crack and first two natural frequencies of the system.
Nakhaei et al. [22] presented some models for a beam with a breathing crack with two different
circulars and V-shape for the shape of the crack. Then, effects of the crack’s parameters which
include depth, shape, and location on the first natural frequency of the system were investigated.
Fu et al. [23] studied on a simply-supported cracked beam considering nonlinear stress
distributions near the crack with two different T-shape and rectangular cross-sections for the
beam and then, presented an estimation for local and global stiffness. In addition, another
interesting approach for researchers is crack detection (for one crack or multiple cracks) and
recently, there are many studies on this subject.[24-33]

Another group of studies is about beams with multiple cracks. Shoaib et al. [34] investigated on
effects of single and double edge crack on the dynamics of piezoelectric cantilever-based MEMS
sensor. Khiem and Hung[35] used a closed-form solution for free vibration of multiple cracked
Timoshenko beam with various boundary conditions. Cannizzaro et al. [36] presented closed-
form solutions for multi-cracked circular arch beam under concentrated static loads. Yoon et al.
[37]investigated the influence of two open cracks on the dynamic behavior of a double cracked
simply supported beam both analytically and experimentally. Lien et al. [38] presented first three
mode shapes of a multiple cracked FG Timoshenko beam for different boundary conditions.

According to mentioned researches, the effect of multiple cracks fault in microbeams has not
been investigated until now. In this article, a simply-supported microbeam with multiple open
dge cracks is considered. then the governing equations with the corresponding boundary
conditions are obtained based on MCST using an analytical approach. and present Afterward, in
the case study, a cracked microbeam with two cracks is studied. Finally, the effect of the position
and depth of the cracks and also material-length-scale parameter on the first three natural
frequencies of the system are investigated.

Therefore, the main contribution of the article is investigating the effect of multiple cracks on the
free vibration of micro-beams with Simply-Supported (SS) boundary condition. In addition, in
this paper, a general solution is presented by using a logical algorithm for determining boundary
conditions of the microbeam with multiple cracks. In other words, natural frequencies of the
multi-crack micro-beam calculated analytically for the first time.

2. Multi-cracked microbeam modeling

Consider a microbeam with n cracks in which crack number i has depth a_i and location L_{ci} from
the left support. Microbeam has the rectangular cross-section, with width b, height h, length L,
with the coordinate system X-Y-Z as shown in Fig. 1. The open edge cracks are assumed
perpendicular to the neutral axis of the microbeam and non-propagating.
According to the number of cracks, lateral displacement of microbeam is divided into \(n + 1 \) segments and every segment has a specific function of displacement. In other words, displacement of the beam includes \(n + 1 \) separate functions of the displacement and time.

Every crack can be modeled with torsional spring such that each of them has a torsional stiffness. It can be said in another way that for analysis of the lateral vibration, the multi-crack microbeam can be modeled in \(n + 1 \) segments which are connected to them with torsional springs at locations \(L_{c1}, L_{c2} \ldots L_{cn} \) (please see Fig. 2). According to Fig. 2, cracks are modeled with torsional springs with equivalent torsional stiffness \(K_{t1}, K_{t2}, \ldots, K_{tn} \).

Fig. 1: Microbeam with multiple open edge cracks

Fig. 2: Modeling of open edge cracks with torsional springs
3. Calculation of the equivalent torsional stiffness of cracks

According to the reference [21], which has presented new models for calculating local stiffness with considering the Stress Intensity Factor (SIF), the equivalent torsional stiffness for every crack can be written as follows:

\[K_t = \frac{1}{C} = \frac{1}{1 + \frac{6}{(1 + \vartheta)(1 - \eta)^2} \left(\frac{l}{h} \right)^2} \left[\frac{EI}{6\pi h(1 - \vartheta^2)D} \right] \]

(1)

where

\[D = 19.600\eta^{10} - 40.693\eta^9 + 47.041\eta^8 - 33.153\eta^7 + 20.469\eta^6 - 10.092\eta^5 + 4.631\eta^4 - 1.077\eta^3 + 0.629\eta^2 \]

(2)

where \(\eta \) is non-dimensional coefficient which is defined as the ratio of crack depth \(a \) to the height of cross-section of the microbeam \(h \) or \(\eta = \frac{a}{h} \).

4. Governing equations of motion

According to the previous sections, by assuming the material properties Young’s modulus \(E \), Poisson’s ratio \(\vartheta \), density \(\rho \), cross-section area moment of inertia \(I \) and material length scale parameter \(l \), the strain energy \(\pi_s \) of each segment of the microbeam can be written as follows [21]:

\[\pi_s = \frac{1}{2} EI \int_0^L \left(\frac{\partial^2 w}{\partial x^2} \right)^2 dx + \frac{1}{2} \frac{6EI}{1 + \vartheta} \left(\frac{l}{h} \right)^2 \int_0^L \left(\frac{\partial^2 w}{\partial x^2} \right)^2 dx \]

(3)

where \(A \) denotes cross-section of the microbeam, and \(I = \int_A z^2 dA = \frac{bh^3}{12} = \frac{Ah^2}{12} \) denotes the cross section area-moment of inertia.

The kinetic energy of the system \(T \) can also be written as follows:

\[T = \frac{\rho}{2} \int_0^L [A\dot{w}^2] \, dx \]

(4)

where \(\rho \) is the density of the microbeam.

Based on Hamilton’s principle, which is as follows:

\[\int_{t_1}^{t_2} \delta(T - \pi + W) \, dt = 0 \]

(5)

By substituting the Eqs. (3) and (4) into (5), and after simplifying by using variation calculus, governing equations of each segment of the microbeam can be derived as follows:

\[S \frac{\partial^4 w}{\partial x^4} + \rho A\ddot{w} = 0 \]

(6)

where

\[S = EI \left[1 + \frac{6}{1 + \vartheta} \left(\frac{l}{h} \right)^2 \right] \]

(7)

The solution of Eq. (6) can be written as follows:
By substituting Eq. (8) into Eq. (6) and with some algebraic simplification, we have

\[
\frac{d^4 W}{dx^4} - \beta^4 W(x) = 0
\]

(9)

where \(\omega \) is natural frequency, \(\rho \) is the material density of the microbeam, and \(A \) is the cross-section of the microbeam.

Also, the general solution of Eq. (9) for each segment can be obtained as follows:

\[
W(x) = A_1 \sin(\beta x) + A_2 \cos(\beta x) + A_3 \sinh(\beta x) + A_4 \cosh(\beta x)
\]

(10)

where \(A_i \), \(i = 1, 2, 3, 4 \) are constants.

Equation (10) can be utilized for every segment and therefore, the governing equations of motion of the first to final \(n+1 \) segment, respectively, can be written as follows

\[
\begin{align*}
W_1(x) &= \bar{A}_1 \sin(\beta x) + \bar{A}_2 \cos(\beta x) + \bar{A}_3 \sinh(\beta x) + \bar{A}_4 \cosh(\beta x); \quad 0 \leq x \leq L_{c1} \\
W_2(x) &= \bar{A}_5 \sin(\beta x) + \bar{A}_6 \cos(\beta x) + \bar{A}_7 \sinh(\beta x) + \bar{A}_8 \cosh(\beta x); \quad L_{c1} \leq x \leq L_{c2} \\
\vdots & \quad \vdots \\
W_{n+1}(x) &= \bar{A}_{4n+1} \sin(\beta x) + \bar{A}_{4n+2} \cos(\beta x) + \bar{A}_{4n+3} \sinh(\beta x) + \bar{A}_{4n+4} \cosh(\beta x); \quad L_{cn} \leq x \leq L
\end{align*}
\]

(11)

where \(\bar{A}_1 \) to \(\bar{A}_{4(n+1)} \) are constants and \(L_{cn} \) is location of the crack number \(n \). By assuming \(L_{c1} \) as the crack location of \(i \) \((i = 1, 2, \ldots, n) \), the boundary conditions of the system can be expressed as follows:

\[
\begin{align*}
W_1(0) &= 0; \quad \frac{d^2 W_1}{dx^2}(0) = 0 \\
W_{n+1}(L) &= 0; \quad \frac{d^2 W_{n+1}}{dx^2}(L) = 0 \\
W_i(L_{ci}) &= W_{i+1}(L_{ci}) \\
\frac{d W_{i+1}}{dx}(L_{ci}) - \frac{d W_i}{dx}(L_{ci}) &= \frac{d^2 W_i}{dx^2}(L_{ci}) \times \frac{S}{K_{ti}} \\
S \frac{d^2 W_i}{dx^2}(L_{ci}) &= S \frac{d^3 W_{i+1}}{dx^3}(L_{ci}) \\
S \frac{d^3 W_i}{dx^3}(L_{ci}) &= S \frac{d^4 W_{i+1}}{dx^4}(L_{ci})
\end{align*}
\]

(12)

where \(K_{ti} \) is the equivalent torsional stiffness spring of the microbeam at \(i \)-th crack’s location.

By substituting Eqs. (13) and (12) into Eq. (11), a set of \(4(n + 1) \) algebraic equations resulting in matrix form for \(n \) cracks can be written as follows:
\[[Q(i,j)][\hat{A}_j] = 0 \quad ; \quad i,j = 1, 2, ..., 4(n+1) \]

where the non-zero components of matrix \([Q]\) can be expressed as follows:

\[Q(1,2) = 1 \quad ; \quad Q(1,4) = 1 \]

\[Q(2,2) = -\beta^2 \quad ; \quad Q(2,4) = \beta^2 \]

\[Q(3,4n+1) = \sin(\beta L) \quad ; \quad Q(3,4n+2) = \cos(\beta L) \]

\[Q(3,4n+3) = \sinh(\beta L) \quad ; \quad Q(3,4(n+1)) = \cosh(\beta L) \]

\[Q(4,4n+1) = -\beta^2 \sin(\beta L) \quad ; \quad Q(4,4n+2) = -\beta^2 \cos(\beta L) \]

\[Q(4,4n+3) = \beta^2 \sinh(\beta L) \quad ; \quad Q(4,4(n+1)) = \beta^2 \cosh(\beta L) \]

\[Q(4 + k, 4k - 3) = \sin(\beta L_{ck}) \quad ; \quad Q(4 + k, 4k - 2) = \cos(\beta L_{ck}) \]

\[Q(4 + k, 4k - 1) = \sinh(\beta L_{ck}) \quad ; \quad Q(4 + k, 4k) = \cosh(\beta L_{ck}) \]

\[Q(4 + k, 4k + 1) = -\sin(\beta L_{ck}) \quad ; \quad Q(4 + k, 4k + 2) = -\cos(\beta L_{ck}) \]

\[Q(4 + k, 4k + 3) = -\sinh(\beta L_{ck}) \quad ; \quad Q(4 + k, 4(k+1)) = -\cosh(\beta L_{ck}) \]

\[Q(4 + n + k, 4k - 3) = \beta \cos(\beta L_{ck}) - \frac{S\beta^2}{K_{ck}} \sin(\beta L_{ck}) \]

\[Q(4 + n + k, 4k - 2) = -\beta \sin(\beta L_{ck}) - \frac{S\beta^2}{K_{ck}} \cos(\beta L_{ck}) \]

\[Q(4 + n + k, 4k - 1) = \beta \cosh(\beta L_{ck}) + \frac{S\beta^2}{K_{ck}} \sinh(\beta L_{ck}) \]

\[Q(4 + n + k, 4k) = \beta \sinh(\beta L_{ck}) + \frac{S\beta^2}{K_{ck}} \cosh(\beta L_{ck}) \]

\[Q(4 + n + k, 4k + 1) = -\beta \cos(\beta L_{ck}) \quad ; \quad Q(4 + n + k, 4k + 2) = \beta \sin(\beta L_{ck}) \]

\[Q(4 + n + k, 4k + 3) = -\beta \cosh(\beta L_{ck}) \quad ; \quad Q(4 + n + k, 4(k+1)) = -\beta \sinh(\beta L_{ck}) \]

\[Q(4 + 2n + k, 4k - 3) = -\beta^2 \sin(\beta L_{ck}) \quad ; \quad Q(4 + 2n + k, 4k - 2) = -\beta^2 \cos(\beta L_{ck}) \]

\[Q(4 + 2n + k, 4k - 1) = \beta^2 \sinh(\beta L_{ck}) \quad ; \quad Q(4 + 2n + k, 4k) = \beta^2 \cosh(\beta L_{ck}) \]

\[Q(4 + 2n + k, 4k + 1) = \beta^2 \sin(\beta L_{ck}) \quad ; \quad Q(4 + 2n + k, 4k + 2) = \beta^2 \cos(\beta L_{ck}) \]

\[(4 + 2n + k, 4k + 3) = -\beta^2 \sinh(\beta L_{ck}) \quad ; \quad Q(4 + 2n + k, 4(k+1)) = -\beta^2 \cosh(\beta L_{ck}) \]

\[Q(4 + 3n + k, 4k - 3) = -\beta^3 \cos(\beta L_{ck}) \quad ; \quad Q(4 + 3n + k, 4k - 2) = \beta^3 \sin(\beta L_{ck}) \]

\[Q(4 + 3n + k, 4k - 1) = \beta^3 \cosh(\beta L_{ck}) \quad ; \quad Q(4 + 3n + k, 4k) = \beta^3 \sinh(\beta L_{ck}) \]

\[Q(4 + 3n + k, 4k + 1) = \beta^3 \cos(\beta L_{ck}) \quad ; \quad Q(4 + 3n + k, 4k + 2) = -\beta^3 \sin(\beta L_{ck}) \]

\[Q(4 + 3n + k, 4k + 3) = -\beta^3 \cosh(\beta L_{ck}) \quad ; \quad Q(4 + 3n + k, 4(k+1)) = -\beta^3 \sinh(\beta L_{ck}) \]
where \(k = 1, 2, \ldots, n \).

For the nontrivial solution of Eq. (14), the determinant of the matrix \([Q]\) must be zero. The obtained results are natural frequencies of the system, which can be calculated by semi-analytical or numerical methods.

5. Case study: A microbeam with two cracks

According to Eqs. (12), (13), by assuming two cracks in the microbeam, the boundary conditions of the system can be rewritten as follows:

\[
\begin{align*}
W_1(l) &= 0; & \frac{d^2w}{dx^2}(l) &= 0 \\
W_1(l_c1) &= W_2(l_c1); & W_2(l_c2) &= W_3(l_c2) \\
(16)
\end{align*}
\]

According to Eq. (16), for two cracks we have 12 boundary conditions, this means that matrix \([Q]\) has 12 rows and 12 columns or \([Q]_{12 \times 12}\). Therefore, non-zero components of matrix \([Q]\) can be simple as follows:

\[
\begin{align*}
Q(1,2) &= 1; & Q(1,4) &= 1 \\
Q(2,2) &= -\beta^2; & Q(2,4) &= \beta^2 \\
Q(3,9) &= \sin(\beta L); & Q(3,10) &= \cos(\beta L) \\
Q(3,11) &= \sinh(\beta L); & Q(3,12) &= \cosh(\beta L) \\
Q(4,9) &= -\beta^2 \sin(\beta L); & Q(4,10) &= -\beta^2 \cos(\beta L) \\
Q(4,11) &= \beta^2 \sinh(\beta L); & Q(4,12) &= \beta^2 \cosh(\beta L)Q(5,1) &= \sin(\beta L_1); & Q(5,5) &= \sin(\beta L_2) \\
Q(5,2) &= \cos(\beta L_1); & Q(6,6) &= \cos(\beta L_2) \\
Q(5,3) &= \sin(\beta L_1); & Q(6,7) &= \sin(\beta L_2) \\
Q(5,4) &= \cos(\beta L_1); & Q(6,8) &= \cos(\beta L_2) \\
Q(5,5) &= -\sin(\beta L_1); & Q(6,9) &= -\sin(\beta L_2) \\
Q(5,6) &= -\cos(\beta L_1); & Q(6,10) &= -\cos(\beta L_2) \\
Q(5,7) &= -\sin(\beta L_1); & Q(6,11) &= -\sin(\beta L_2) \\
Q(5,8) &= -\cos(\beta L_1); & Q(6,12) &= -\cos(\beta L_2)
\end{align*}
\]
\[Q(7,1) = \beta \cos(\beta L_{c1}) - \frac{S\beta^2}{K_{t1}} \sin(\beta L_{c1}); \]
\[Q(8,5) = \beta \cos(\beta L_{c2}) - \frac{S\beta^2}{K_{t2}} \sin(\beta L_{c2}); \]
\[Q(7,2) = -\beta \sin(\beta L_{c1}) - \frac{S\beta^2}{K_{t1}} \cos(\beta L_{c1}); \]
\[Q(8,6) = -\beta \sin(\beta L_{c2}) - \frac{S\beta^2}{K_{t2}} \cos(\beta L_{c2}); \]
\[Q(7,3) = \beta \cosh(\beta L_{c1}) + \frac{S\beta^2}{K_{t1}} \sinh(\beta L_{c1}); \]
\[Q(8,7) = \beta \cosh(\beta L_{c2}) + \frac{S\beta^2}{K_{t2}} \sinh(\beta L_{c2}); \]
\[Q(7,4) = \beta \sinh(\beta L_{c1}) + \frac{S\beta^2}{K_{t1}} \cosh(\beta L_{c1}); \]
\[Q(8,8) = \beta \sinh(\beta L_{c2}) + \frac{S\beta^2}{K_{t1}} \cosh(\beta L_{c2}); \]
\[Q(7,5) = -\beta \cos(\beta L_{c1}); \]
\[Q(7,6) = \beta \sin(\beta L_{c1}); \]
\[Q(8,9) = -\beta \cos(\beta L_{c2}); \]
\[Q(8,10) = \beta \sin(\beta L_{c2}); \]
\[Q(7,7) = -\beta \cosh(\beta L_{c1}); \]
\[Q(8,11) = -\beta \cosh(\beta L_{c2}); \]
\[Q(7,8) = -\beta \sinh(\beta L_{c1}); \]
\[Q(8,12) = -\beta \sinh(\beta L_{c2}); \]
\[Q(9,1) = -\beta^2 \sin(\beta L_{c1}); \]
\[Q(10,5) = -\beta^2 \sin(\beta L_{c2}); \]
\[Q(9,2) = -\beta^2 \cos(\beta L_{c1}); \]
\[Q(10,6) = -\beta^2 \cos(\beta L_{c2}); \]
\[Q(9,3) = \beta^2 \sinh(\beta L_{c1}); \]
\[Q(10,7) = \beta^2 \sinh(\beta L_{c2}); \]
\[Q(9,4) = \beta^2 \cosh(\beta L_{c1}); \]
\[Q(10,8) = \beta^2 \cosh(\beta L_{c2}); \]
\[Q(9,5) = \beta^2 \sin(\beta L_{c1}); \]
\[Q(10,9) = \beta^2 \sin(\beta L_{c2}); \]
\[Q(9,6) = \beta^2 \cos(\beta L_{c1}); \]
\[Q(10,10) = \beta^2 \cos(\beta L_{c2}); \]
\[Q(9,7) = -\beta^2 \sinh(\beta L_{c1}); \]
\[Q(10,11) = -\beta^2 \sinh(\beta L_{c2}); \]
\[Q(9,8) = -\beta^2 \cosh(\beta L_{c1}); \]
\[Q(10,12) = -\beta^2 \cosh(\beta L_{c2}); \]
\[Q(11,1) = -\beta^3 \cos(\beta L_{c1}); \]
\[Q(12,5) = -\beta^3 \cos(\beta L_{c2}); \]
\[Q(11,2) = \beta^3 \sin(\beta L_{c1}); \]
\[Q(12,6) = \beta^3 \sin(\beta L_{c2}); \]
\[Q(11,3) = \beta^3 \cosh(\beta L_{c1}); \]
\[Q(12,7) = \beta^3 \cosh(\beta L_{c2}); \]
\[Q(11,4) = \beta^3 \sinh(\beta L_{c1}); \]
\[Q(12,8) = \beta^3 \sinh(\beta L_{c2}); \]
\[Q(11,5) = \beta^3 \cos(\beta L_{c1}); \]
\[Q(12,9) = \beta^3 \cos(\beta L_{c2}); \]
\[Q(11,6) = -\beta^3 \sin(\beta L_{c1}); \]
\[Q(12,10) = -\beta^3 \sin(\beta L_{c2}); \]
\[Q(11,7) = -\beta^3 \cosh(\beta L_{c1}); \]
\[Q(12,11) = -\beta^3 \cosh(\beta L_{c2}); \]
\[Q(11,8) = -\beta^3 \sinh(\beta L_{c1}); \]
\[Q(12,12) = -\beta^3 \sinh(\beta L_{c2}); \]
6. Numerical results and discussion

In this section, the numerical method is utilized for solving the problem and obtaining first three natural frequencies of the system. The multi-cracked microbeam is assumed to be made of an epoxy material with the following mechanical properties [21]: Young’s modulus $E = 1.44 \text{ GPa}$, Poisson’s ratio $\nu = 0.38$, density $\rho = 1220 \text{ kg/m}^3$, and material length scale parameter $l = 17.6 \mu\text{m}$. Also, length and cross-section dimensions of the multi-cracked microbeam are length $L = 20h$, height $h = 20 \mu\text{m}$ and width $b = 2h$.

According to Figs. 1 to 3, the first three natural frequencies of the system ($\omega_{n1}, \omega_{n2}, \omega_{n3}$) have been plotted versus cracks depth ratio (η) with three different material length scale parameter’s ratios ($\frac{l}{h} = 0, 0.25, 0.5$); the location of first and second cracks are fixed at $\frac{L_{c1}}{L} = 0.25$, $\frac{L_{c2}}{L} = 0.5$, respectively. The results show that the natural frequencies increase by increasing material length scale parameter and decrease by increasing cracks depth due to the reduction of the equivalent torsional stiffness K_t.

![Figure 3: Variation of the first natural frequency versus the crack depth ratio with three different values of the material-length-scale parameter](image)

Figures 4, 5 and 6, are related to the investigation on the effect of the first crack position and the depth of cracks on the frequencies. The second crack location has been fixed at $\frac{L}{2}$ and material
length scale parameter is constant in the ratio of $\frac{l}{h} = 0.25$. The figures show that the frequencies decrease by increasing the cracks depth and decrease by increasing the number of cracks from the one crack to the two cracks and also generally decrease if the location of the crack moves from the simple supports and node points.

Fig. 4: Variation of the second natural frequency versus the crack depth ratio with three different values of the material-length-scale parameter

In Figs. 9, 10 and 11, the depth of the two cracks is equal and has a constant ratio of $\eta_1 = \eta_2 = 0.2$ and once again, the second crack location has been kept constant at $\frac{L}{2}$ and the first crack location changes from zero to $\frac{L}{2}$ with three different material-length-scale ratios. The obtained results express that the natural frequencies of the system increase by increasing material length scale parameter and decrease by moving away from the simply supported of the beam and node points.
Fig. 5: Variation of the third natural frequency versus the crack depth ratio with three different values of the material-length-scale parameter.

Fig. 6: Variation of the first natural frequency versus the crack depth ratio with the various first crack location.
Fig. 7: Variation of the second natural frequency versus the crack depth ratio with the various first crack location

Fig. 8: Variation of the third natural frequency versus the crack depth ratio with the various first crack location
Fig. 9: Variation of the first natural frequency versus the first crack location with three different values of the material-length-scale parameter.

Fig. 10: Variation of the second natural frequency versus the first crack location with three different values of the material-length-scale parameter.
Fig. 11: Variation of the third natural frequency versus the first crack location with three different values of the material-length-scale parameter

7. Verification

In a special case, if \(\frac{l}{h} \approx 0 \), the microbeam is converted to a macro system and also by neglecting cracks in the beam by substituting \(\eta = 0 \), the system will be converted to a simple Euler-Bernoulli beam problem without any crack. Therefore, in Figs. 3, 4 and 5, the intersection of the blue line curves with the vertical axis must be exactly equal to natural frequencies of the simply-supported Euler-Bernoulli beam as follows [39]:

\[
\omega_n (Hz) = \left(\frac{1}{2 \pi} \right) (\beta_n L)^2 \left(\frac{EI}{\rho AL^4} \right)^{\frac{1}{2}} ; \quad \beta_n L = n\pi \quad (n = 1, 2, \ldots)
\]

(18)

By replacing mechanical properties and dimensions of the beam, the first three natural frequencies of the system can be calculated as follows:

\[
\omega_{n1} = \left(\frac{1}{2 \pi} \right) (\pi)^2 \left(\frac{EI}{\rho AL^4} \right)^{\frac{1}{2}} = 6.1580 \times 10^4 \quad (Hz)
\]

\[
\omega_{n2} = \left(\frac{1}{2 \pi} \right) (2\pi)^2 \left(\frac{EI}{\rho AL^4} \right)^{\frac{1}{2}} = 4\omega_{n1} = 2.4632 \times 10^5 \quad (Hz)
\]

\[
\omega_{n3} = \left(\frac{1}{2 \pi} \right) (3\pi)^2 \left(\frac{EI}{\rho AL^4} \right)^{1/2} = 9\omega_{n1} = 5.5422 \times 10^5 \quad (Hz)
\]

(19)
The above analytical results exactly are equal to the frequencies of the blue line curves in Figs. 3, 4 and 5, respectively.

Also for macro beam cases (or if \(\frac{t}{h} \approx 0 \)), according to Eq. (7) then \(S \approx EI \). In these cases, the general solution of Eqs. (11) and boundary conditions Eqs. (16) will be exactly equal to the general solution and boundary conditions of Yoon et al. [37] that investigated the free vibration of double cracks a simply-supported Euler-Bernoulli beam.

In addition, by assuming a single crack in the system, governing equations of boundary conditions of Eqs. (12), (13) are written as follows:

\[
W_1(0) = 0 ; \quad \frac{d^2W_1}{dx^2}(0) = 0 \\
W_2(L) = 0 ; \quad \frac{d^2W_2}{dx^2}(L) = 0 \\
W_1(L_{c1}) = W_2(L_{c1}) \\
\frac{dW_2}{dx}(L_{c1}) - \frac{dW_1}{dx}(L_{c1}) = \frac{d^2W_1}{dx^2}(L_{c1}) \times \frac{S}{K_{ii}} \\
S \frac{d^2W_1}{dx^2}(L_{c1}) = S \frac{d^2W_2}{dx^2}(L_{c1}) \\
S \frac{d^2W_1}{dx^2}(L_{c1}) = S \frac{d^2W_2}{dx^2}(L_{c1})
\]

Eqs. (20), (21) exactly are equal to boundary conditions of Rahi [21] that researched on the effect of a crack on a simply-supported micro beam where \(L_c = L_{c1} \).

8. Conclusion

In this paper, a simply-supported microbeam with multiple cracks was studied. In addition, based on MCST, the lateral dynamic behavior of the microbeam with Euler-Bernoulli model was investigated. First, every open edge crack was considered with a torsional spring based on MCST. Then, the governing equations of motion and boundary conditions of the system were obtained using Hamilton’s principle. The governing equations were solved by the separating variables method. After that, the natural frequencies of the system were analytically calculated. Finally, numerical results were presented for the microbeam with two open-edge cracks. The results show that the depth of the cracks, the location of cracks, and material length scale parameter are extremely effective on the natural frequencies of the system.
References

