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Nonlinear localization approaches are used not only for detecting the 
exact location of the nonlinear elements in mechanical structures, but 
they are also exploited in order to find any possible flaws such as cracks 
in Structural Health Monitoring (SHM) applications. This study aims to 
develop a localization method to determine the location of localized 
nonlinearities in dynamic structures utilizing the experimentally 
measured data obtained from the base excitation test. The nonlinear 
element in the experimental set-up is represented by a pair of 
permanent magnets placed on both sides on the free end of the 
cantilever, and a pair of electromagnets placed with equal distances on 
both sides of the permanent magnets. The combination of permanent 
and electromagnets create and apply nonlinear electromagnetic force 
on the free end of the cantilever beam. Hence, stepped-sine vibration 
tests are carried out using constant acceleration base excitation to 
measure the response of the nonlinear system. The linear response of 
the system obtained from the low amplitude test is used to update the 
Finite Element (FE) model of the underlying linear system of the 
structure. Then, the developed approach utilizes the updated linear 
model along with the measured nonlinear dynamics of the experimental 
set-up obtained using high-amplitude excitation to determine the 
location of nonlinearity. The results of the experimental study are 
demonstrated to show the performance of the presented method. 
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1. Introduction 

Almost all engineering structures have nonlinearities coming from various sources such as 

nonlinear material, geometry, or joints. Of these structures, many can be properly linearized 

using conventional theories, as their nonlinearities are weak enough to be ignored. However, on 

the other hand, in many applications, the nonlinearity is stronger than to be neglected. Hence, to 

have an accurate prediction of the behaviour of the system, the nonlinear model is required to be 

identified and characterized. There have been numerous studies on the nonlinear identification 

techniques[1-17], mostly relying on the assumption of the per-known location of nonlinearity. 

However, in case there is not enough information about the linearity or nonlinearity of the 

system, a prerequisite for identifying nonlinear elements is to detect the existence of 

nonlinearities and determine their exact location in engineering structures. Not only for locating 

the localized nonlinearities, but the localization methods are used also in other applications such 

as structural health monitoring to detect the location of cracks or unexpected flaws. Accordingly, 

a multitude of localization approaches has been presented in recent decades[18-24]. Reasonably, 

all localization methods are based on the comparison between an analytical model of the 

structure and the experimental data.   

In practice, it is not usually possible to measure the response at all coordinates of the structure. 

For instance, measuring the response of the system in the vicinity of joints is too difficult, or 

when a relatively huge structure is going to be tested, there may not be enough equipment to 

measure all required coordinates. Lin and Ewins [20] developed a method based on correlating 

an analytical model with experimental data to locate the localized nonlinear elements in 

dynamical structures. The method presented in their study does not require complete 

measurement at all coordinates, as well as the modelling error is considered in this method. They 

applied the aforementioned method on both numerical and experimental studies to demonstrate 

the performance of the method.  

Investigating the nonlinear localization approaches based on domain decomposition, Cresta et al. 

[21] proposed two versions of these strategies and applied them to analyse the post-buckling 

behaviour of long slender structures. They carried out a comparative study on the performances 

of different methods based on the convergence results. Ondra et al. [22] introduced an approach 

based on the Hilbert transform in the frequency domain and artificial neural networks to detect 

and identify structural nonlinearities. In this method, training data required for the artificial 

neural network is created using the frequency response function described by Hilbert transform. 

To this end, an assumption on the possible types of nonlinearities and corresponding parameter 

ranges are required. In [23], Koyuncu et al. utilized cascaded optimization and neural networks 

so as to localize and identify the nonlinear elements of dynamical structures. To this end, 

possible locations of nonlinearities, possible nonlinear forms, and a possible range of parameters’ 

values are selected for the structure considering the physics of the problem. Of course, this 

requires experience and good engineering sight to avoid missing any possibilities. The assumed 

possibilities are then used to produced training data using finite element model of the structure. 

Cascaded optimization and neural networks employ this data set to find, detect, and characterize 

the nonlinearities of the system. The approach introduced in their study requires an assumption 

or pre-knowledge about the location and type of nonlinearities, as well as the range of parameter 

values, which may affect the results of localization and identification of the nonlinear elements.  
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Developing a localization technique to detect the location of localized nonlinearities based on 

incomplete measurements, Wang et al. [24] tried to eliminate the limitation on the complete 

measurement for nonlinear localization. The method presented in their study does not require the 

type of nonlinearity to be assumed or pre-known. Many of the nonlinear localization and 

identification methods are based on the usage of frequency response of the system. Also, they 

usually utilize the data obtained from force excited vibrational tests, as it is easier to find the 

frequency response function in single-input-multi-output tests. The problem here is that applying 

shaker force through stingers may change the configuration of the systems, particularly for the 

case of more flexible structures, and this may lead to the considerably different dynamic 

behaviour of the original structure and make it difficult to identify the system. On the other hand, 

due to some restrictions, it may be better or more convenient to do the test by base excitation. 

Therefore, in some cases, it is decided to use base excitation test instead of point force excitation. 

However, there are two main difficulties in using base excitation vibration test for the methods 

exploiting frequency response function. The first challenge in this kind of test is that there is no 

explicit force measurement. In fact, the base motion is transferred to the main structure, and 

therefore, base excited structural tests are considered as multi-input vibration tests. Accordingly, 

the second difficulty is to find the required frequency response function in a multi-input-multi-

output test. This study aims to develop a localization method to deal with the aforementioned 

difficulties. This method is developed based on the localization technique introduced by Wang et 

al.[24] to localize the nonlinear elements of a structure using base excited vibrational test data. 

Taghipour et al. [17] dedicated their paper to the identification and characterization of nonlinear 

structures using base-excitation vibration test data. In [17], they assumed that the exact location 

of the nonlinear element of the structure is pre-known. In contrast to their study, the current work 

is focused on detecting the exact location of the unknown nonlinear elements of the mechanical 

structures. Besides, in many practical structures, it is not applicable to do vibration test using 

point force excitation. Therefore, the present study exploits the method introduced by Wang et 

al. [24] to propose a practical approach for localization of structural nonlinearities using the 

experimental results of base excitation vibration tests.  

This paper is focused on the experimental localization of an electromagnetic nonlinear force 

applied to a base-excited cantilever beam. For this purpose, the base motion of the shaker bed is 

used as base excitation of the cantilever beam. A combination of two pairs of electromagnets and 

permanent magnets generates a nonlinear force which is applied to the tip of the cantilever beam. 

To this end, a symmetric configuration is designed so that permanent magnets are attached to the 

free end of the cantilever beam, while the pair of electromagnets are placed on the two sides of 

the permanent magnets. A base motion with a constant amplitude of acceleration is utilized to 

excite the structure of the cantilever beam. The responses obtained from low-amplitude base 

motion are exploited to update the underlying linear system. There are many well-developed 

linear model updating methods in the literature, [25-27], to be used for this purpose. Using the 

updated model of the underlying linear system along with nonlinear response of the structure 

resulted by high-amplitude excitation, the exact location of the nonlinear element is detected 

using the developed localization process based on the method introduced by Wang et al.[24].  
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2. Experiment set-up 

The experimental setup considered in this study and its finite element schematic are shown in 

Fig. 1. The main structure of this setup is a cantilever steel beam. A pair of permanent magnets 

are attached to the tip of the beam and two electromagnets are located symmetrically on both 

sides of the permanent magnets, as shown in Fig. 1. At the equilibrium position of the cantilever, 

symmetric 6-cm gaps exist between two pairs of permanent and electromagnets. Attractive 

magnetic forces are created in electromagnets by applying a voltage level of 20 V to two 

electromagnets. These two pairs of permanent magnets and electromagnets generate a nonlinear 

electromagnetic restoring force which is applied on the tip of the cantilever beam. The cantilever 

beam is attached to the shaker bed and is excited by the base motion of the shaker with constant 

acceleration.  Stepped-sine excitation method is utilized to measure the nonlinear response of the 

structure. The displacement of the shaker bed is measured using an accelerometer attached to the 

shaker, while three other accelerometers are used to measure the translational degrees of freedom 

1, 5, and 9, demonstrated in the schematic in Figure 1. These accelerometers have masses of 8 g 

and attached to the beam as shown in Figure 1. Table 1 contains the geometry and material 

properties of the experimental setup. 

 

 
Fig.1: Test-rig assembly and its finite element schematic. 
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Table 1: Geometry and material properties of the experimental setup. 

Parameters Values 

Length of cantilever beam (l) 0.3 m 

Width of cantilever beam (d) 0.03 m 

Thickness of cantilever beam (t) 0.0015 m 

Density of cantilever beam (𝝆) 7800 𝐤g/m3 

Modulus of elasticity of cantilever beam (E) 193 

Mass of each accelerometer 8 g 

Each permanent magnet mass (𝒎𝑷) 4 g 

Permanent magnets’ pull strength (N42 Neodymium 

magnets) 
2 kg 

Electromagnets’ pull strength 25 kg 

Applied voltage to electromagnets (V) 20 V 

Initial gap between electromagnets and permanent 

magnets  
6 cm 

 

The following section is devoted to deriving a nonlinear mathematical model for the system 
of the cantilever beam of Figure 1.  

3. Mathematical Model 

Considering a cantilever beam with Young’s modulus 𝐸, density 𝜌, length 𝐿, width 𝑑, and 

thickness ℎ, subjected to base excitation, the finite element model of the structure shown in Fig. 

1 can be written as, 

 𝐌̂𝒘̈ + 𝐂̂𝒘̇ + 𝐊̂𝒘 + 𝒇𝑁𝐿(𝒘, 𝒘̇) = 𝒇𝑏(𝑡), (1) 

where 𝐌̂, 𝐂̂, and 𝐊̂ denote, respectively, the mass, damping, and stiffness matrices of the 

underlying linear system of the structure, 𝒘, 𝒘̇, and 𝒘̈ are relative displacement of the beam with 

respect to the base motion and its time derivatives, respectively, 𝒇𝑁𝐿(𝒘, 𝒘̇) is the nonlinear 

internal force, and 𝒇𝑏(𝑡) is the equivalent force vector of the base excitation which is applied on 

the structure. The mass and stiffness matrices of two-node linear Euler-Bernoulli beam elements 

are obtained as following [28], 
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Calculating the global mass and stiffness matrices using Eqs. (2) and (3), and considering 

proportional damping for the cantilever beam, the damping matrix can be written as, 

 𝐂̂ = 𝛼𝐌̂ + 𝛽𝐊̂ 
(4) 

where 𝛼 and 𝛽 are proportional damping coefficients. As the aluminium L-shaped clamp is not 

completely rigid, it is considered in the model as a cantilever beam, neglecting its torsional 

motion. Figure 2 demonstrates the equivalent model of the system considering the effect of an L-

shaped clamp. The following equations give the expressions for the equivalent mass 𝑚𝑏 and 

linear stiffness 𝑘𝑏 of the aluminium clamping beams. 

 
𝑚𝑏 =

33

140
(𝜌𝐴𝑙𝑉𝐴𝑙𝑏

), 𝑘𝑏 =
3𝐸𝐴𝑙𝐼𝐴𝑙𝑏

𝐿𝐴𝑙
3

𝑏

, (5) 

where 𝐸𝐴𝑙 and 𝜌𝐴𝑙 are respectively Young’s modulus and density of aluminium. 𝑉𝐴𝑙𝑏
, 𝐼𝐴𝑙𝑏

, and 

𝐿𝐴𝑙𝑏
 denote, respectively, the volume, the second moment of area, and the length of the 

aluminium support beam.  

As explained in Section 2, the excitation method used in this study is base excitation. In other 

words, there is no explicit force vector applied on the structure. In fact, the base movement is 

transferred to the structure and makes it to oscillate. To find the equivalent force of base 

excitation applied to the structure, one may utilize the following equation, [27], 

 𝒇𝑏(𝑡) = −𝑧̈𝑏[𝐌̂]{𝐠}, 
(6) 

 

 
 

Fig.2: Schematic view of the experimental test-rig including side view (a) and top view (b) of the beam attached to 

the shaker bed; (c) the equivalent model of the system of shaker bed and the cantilever beam. 
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where 𝒇𝑏(𝑡) denotes the equivalent force vector of base motion transferred to the structure, 𝑀 is 

the mass matrix of the system, 𝑧̈𝑏 is the base acceleration in the time domain, and {𝐠} is the force 

coordinator vector defined as, 
 

 
𝑔𝑖 = {

1, if 𝑧𝑖and 𝑧𝑏 are in the same direction
 

0, if they are not in the same direction
 (7) 

4. Localization  

In this study, the localization process introduced by Wang et al.[23] is developed for vibration 

tests with base excitation. This method is based on the comparison between the responses of the 

underlying linear system and the nonlinear system. Therefore, two types of vibration tests are 

required. One is the low amplitude excitation test which is used to update the model of the 

underlying linear system, and the other one is a high amplitude excitation test giving the 

nonlinear dynamics of the system required for the localization process.  

Hence, the localization process is described below: 

a. Linear model updating: For both localization and identification of mechanical 

structures, an accurate model of the underlying linear system is required. Consequently, 

having any modelling error may lead to inaccuracy in the result of the localization or 

identification process. Hence, to reduce the modelling error to the lowest possible 

amount, the measured linear response of the system, obtained from the low-amplitude 

excitation test, is used to update the preliminary model of the underlying linear system 

prior to begining the localization process. To this end, there are a variety of linear model 

updating methods developed in the literature [25-27]. In this study, sensitivity-based 

linear model updating method presented by Mottershead et al. [26] is exploited to update 

the underlying linear model of the structure. For more details, one may refer to ref. [26]. 

The updated underlying linear model is obtained as: 

 𝐌𝐰̈(𝑡) + 𝐂𝐰̇(𝑡) + 𝐊𝐰(𝑡) = 0 
(8) 

where 𝐌, 𝐂, and 𝐊 are updated mass, damping and stiffness matrices. 

b. Data selection: It is not necessary to take into account all the data over the whole 

frequency span. Indeed, to accelerate the localization process, data selection is carried out 

to discard the unnecessary data. The localization process is based on the difference 

between the response of the nonlinear structure and its underlying linear system under the 

same excitation. Therefore, a high-amplitude excitation signal is applied to the structure 

to measure the nonlinear response of the system. On the other hand, having the updated 

underlying linear system, the measured high-amplitude excitation signal is applied to the 

system of Eq. (8) to simulate the linear response of the system. The deviation 𝛆𝑛𝑙 of the 

measured nonlinear response from the simulated linear response is defined as: 

 𝛆𝑛𝑙(𝜔) = 𝐰𝑛𝑙
𝑒𝑥(𝜔) − 𝐰𝑙

𝑠𝑖𝑚(𝜔) 
(9) 

 

where 𝐰𝑛𝑙
𝑒𝑥(𝜔) and 𝐰𝑙

𝑠𝑖𝑚(𝜔) are, respectively, the amplitude of measured nonlinear response of 

the nonlinear structure and simulated linear response of the underlying linear system in 
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frequency domain under the same high-amplitude excitation. Then, a criterion is chosen to select 

the measured data for the localization process. The criterion is defined so that it guarantees the 

effect of nonlinearity on the dynamics of the structure to be significant enough 

 ‖𝛆𝑛𝑙(𝜔𝑖)‖∞ > 𝛿𝑐 (10) 

where ‖∎‖∞ represents the infinity norm, and 𝛿𝑐 is the threshold for the defined criterion. To 

minimize the effect of measurement noise and modelling error, 𝛿𝑐 is considered as, [29], 

 𝛿𝑐 = ‖𝐰𝑛𝑙
𝑒𝑥‖ × (2~5%) 

(11) 

where ‖∎‖ denotes the Euclidean norm. 
  

c. Nonlinear force assessment: The method does not require complete spatial measurement 

at all coordinates. However, the effect of unmeasured degrees of freedom is considered in 

this method. Accordingly, the coordinates of the system are categorized into measured 

and unmeasured regions: 

 𝐰 = {
𝐰𝑚

𝐰𝑢
}, (12) 

where the indices 𝑚, 𝑢 represent the measured and unmeasured DOFs, respectively. The 

measured degrees of freedom are expanded by the SEREP expansion method to predict the 

response of the system at unmeasured coordinates. Then, the unmeasured DOFs are projected 

onto the measured region using the Craig-Bampton reduction method. Consequently, through a 

series of simple mathematics [20], the reduced nonlinear force (RNF) is calculated as a 

summation of measured nonlinear forces and the projection of unmeasured nonlinear forces onto 

the measured region. 

  𝐅𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 𝐅𝑒𝑞𝐻
− (𝐃̅𝑚𝑚 − 𝐃̅𝑚𝑘𝐃̅𝑘𝑘

−1𝐃̅𝑘𝑚)𝐰𝑚, 
(13) 

where 𝐃̅𝑚𝑚, 𝐃̅𝑚𝑘, 𝐃̅𝑘𝑘, 𝐃̅𝑘𝑚 are dynamic stiffness sub-matrices [23]. The index of the reduced 

nonlinear force is calculated as a summation of the RNFs at the measured DOFs over a range of 

measured frequencies, 

 𝐈𝐅𝑟𝑒𝑑𝑢𝑐𝑒𝑑
∗ = ∑|𝐅𝑟𝑒𝑑𝑢𝑐𝑒𝑑

∗ (𝜔𝑖)|

𝜔𝑖

, (14) 

The suspect region for the location of the nonlinearity is determined using the resulting RNFs, 

the index of the RNFs, and the phase of the RNFs. Consequently, the preliminary decision for 
the location of the nonlinear elements is made by minimizing the residual 𝐽𝑒𝑟𝑟 ,  
 

 𝐅𝑠𝑢𝑠𝑝𝑒𝑐𝑡 = ArgMin ‖𝑱𝑒𝑟𝑟‖, 
(15) 

Where 
 

 𝑱𝑒𝑟𝑟 = [𝚿𝑢𝑚
𝑇 𝐁𝑢 𝐁𝑚]𝐅𝑠𝑢𝑠𝑝𝑒𝑐𝑡 − 𝐅𝑟𝑒𝑑𝑢𝑐𝑒𝑑 , 

(16) 

and 𝐁𝑢 and 𝐁𝑚 are the input matrices for the unmeasured and measured DOFs in the suspect 

region, respectively. Ψ𝑢𝑚 denotes the matrix of constraint modes in the Craig-Bampton 

reduction method [27]. 
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Verification: Finally, the result of the location is verified by comparing the nonlinear forces for 

the suspected region with the reduced nonlinear forces for the measured region 

 ‖𝑱𝑒𝑟𝑟‖ ≪ ‖𝐅𝑟𝑒𝑑𝑢𝑐𝑒𝑑‖, 
(17) 

The criterion of Eq. (17) is required to be satisfied with the results of the localization process to 

be valid. 

5. Results and discussion 

The section is allocated to the results and discussion. First, a comparison is given between 

numerically simulated response obtained using the updated linear model of the system and the 

experimentally measured linear response obtained from the low-amplitude test. Afterward, 

illustrating the results of the localization process, the application of the localization procedure on 

the present nonlinear structure is discussed. 

As explained, to perform the localization process of the present study, two different sets of 

vibration tests are carried out; low amplitude and high amplitude tests. For the case of the low 

amplitude vibration test, the shaker bed is moving with constant acceleration amplitude equal to 

2% of the gravitational acceleration 𝑔. In order to make sure that the excitation level is sufficient 

to excite the nonlinearity of the structure, the high-amplitude test with a large enough amplitude 

of excitation is carried out to measure the nonlinear dynamics of the structure. In this study, the 

base motion with a constant acceleration amplitude equal to 8% of the gravitational acceleration 

is used to measure the nonlinear response of the cantilever beam.  

In order to minimize the effect of modelling error in the results of localization process, the 

underlying linear model of the structure is required to be updated using the measured data 

obtained from a very low-amplitude vibration test. In this study, three parameters of the system 

(the flexural stiffness 𝐸𝐼, base stiffness 𝑘𝑏, and the base mass 𝑚𝑏) are updated using the 

sensitivity-based updating method [26] and the first three natural frequencies. Then, an 

experimentally measured damping ratio of the linear response of the system along with 

sensitivity-based updating method for damping ratio is exploited to update the proportional 

damping coefficients 𝛼 and 𝛽. Table 2 gives the values of all parameters of the structure 

considered in updating the underlying linear model. 

The updating process has been repeated for 20 iterations. The values of updated parameters 𝐸𝐼, 

𝑘𝑏 and 𝑚𝑏 are shown in Figure 3 during the updating process. As illustrated in Figure 4, the 

updated numerical model is capable of predicting accurately the experimentally measured natural 

frequencies.  
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Table 2- Fixed and updated parameters of the underlying linear model. 

 Parameters  Notation 

Values (units in SI) 

Initial guess or 

fixed values 
Updated values 

Fixed 

Parameters 

Accelerometers’ mass 𝑚𝑎  0.008 - 

Mass of the permanent magnets 𝑚𝑝  0.004 - 

Linear mass density of the beam 𝜌𝐴  0.368 - 

Beam length  𝐿  0.3 - 

Updated 

parameters 

Damping coefficient of mass 𝛼  0.2 0.294 

Damping coefficient of stiffness 𝛽  1 × 10−5 1.33 × 10−5 

Flexural stiffness of the beam 𝐸𝐼  1.741 1.64 

Equivalent stiffness of the clamp support 𝑘𝑏  8.256 × 105 5.5 × 105 

Equivalent mass of the clamp support 𝑚𝑏  0.1016 0.103 

 
 

 
Fig.3: The parameters updated in the process of linear model updating. 
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Fig. 4: The numerical natural frequencies obtained using the updated linear model versus the experimentally 

measured ones. 

 

 

Fig. 5: The experimentally measured frequency response compared with the updated numerical frequency response 

of the cantilever beam at DOF1. This figure shows the ratio of the amplitudes of accelerations as the frequency 

response of the structure. 
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The numerical linear frequency response of the structure is simulated exploiting the updated 

parameters of the underlying linear model. Figure5 illustrates the numerically simulated 

frequency response in comparison with the measured dynamics of the structure at DOF1 within 

the frequency range of (0 − 200) Hz including the first three natural frequencies. It is observed 

that the anti-resonance frequencies can be accurately predicted by the updated model, as well as 

the resonance frequencies. Here it should be mentioned that the updating process does not utilize 

the anti-resonance frequencies. As a result, the numerically updated results being in excellent 

accordance with experimentally measured both resonance and anti-resonance frequencies 

verifies the validity of the updated linear model. Figure 6 gives a comparison between the low-

amplitude experimental and updated numerical linear responses at the vicinity of the first 

resonance, taking the effect of nonlinear electromagnetic force into consideration both in 

experimental and numerical results. 

 

 Fig. 6: The updated linear response in comparison with the measured dynamics of the nonlinear structure obtained 

from the low amplitude vibration test. 𝑨𝒊 (𝒊 = 𝟏, 𝟐, 𝟑) denotes the amplitude of the accelerations measured by three 

accelerometers, respectively. 

After updating the linear finite element model, this linear model is used to detect the exact 

location of the nonlinear element of the structure. Utilizing the updated linear model and the 

experimental data from the high amplitude tests, the reduced nonlinear forces of the system are 

obtained according to the localization process. To this end, the structure is subjected to a 

constant acceleration base excitation with a large amplitude of 0.08 𝑔. The high-amplitude 

constant acceleration of the movement of the shaker bed is shown in Figure 7 for the frequency 

span of 8.9 Hz to 11 Hz. It is worth mentioning that the interaction between the shaker and the 
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dynamics of the system at the vicinity of the natural frequency may lead to variation in the 

excitation level. Hence, a closed-loop (controlled) stepped-sine vibration test is performed in 

order to control the excitation signal. Forward and backward sweeps may be required to obtain 

all stable solutions of the system, particularly in the region of multi-solution response. However, 

taking the upper branch of the nonlinear response (with larger amplitude) into consideration 

guarantees the nonlinearity of the dynamic response to be considered in the calculation. This is 

because, the bigger difference between nonlinear and linear responses, the better the results of 

the localization process. On the other hand, the system of the present study has softening 

nonlinearity. Therefore, only the backward sweep (sweep-down) test, which provides the upper 

branch of the response, is sufficient. The amplitude of the excitation is selected as large as it 

makes sure the system shows a nonlinear dynamic response. Figure 8 illustrates the response-

frequency diagram of the nonlinear dynamics of the system, including amplitudes and phases at 

three DOFs 1, 5, and 9 which are related to the translational displacement of the points with 

distances 5, 15, and 25 cm from the fixed end of the cantilever beam, respectively. The 

localization process is carried out using the measured nonlinear responses of the structure for the 

purpose of detecting the exact location of the unknown nonlinear restoring force. 

 
 

 
Fig. 7: Controlled constant acceleration base motion; (a) amplitude, (b) phase (b). 

The localization is carried out using the measured nonlinear responses, according to the 
process explained in Section 4. Figure 9 illustrates the magnitude and phase of the reduced 
nonlinear force at measured DOFs. The indices of the reduced nonlinear force for measured 
DOFs 1, 5, and 9 are shown in Figure 10, demonstrating that the nonlinear element is 
located at or close to DOF9. On the other hand, Figure 9 illustrates a phase difference of 180 
degrees between DOFs 5 and 9, while the index of the nonlinear force of DOF9 is shown in 
Figure 10 to be much greater than the one of DOF5. Therefore, it can be concluded that 
there is no ungrounded (connected) nonlinear element between DOFs 5 and 9. 
Conclusively, DOFs 1 and 5 can be discarded from the suspect region of nonlinearity. 
Besides, DOF3 located between DOFs 1 and 5 can be discarded from the suspect region. As 
a result, DOFs 7, 9, and 11 are considered as suspect DOFs. The nonlinear force has been 
calculated for the suspect region. Looking at the indices of nonlinear forces in the suspect 
region, Figure 11, one can interpret that the nonlinear element may be at both DOFs 9 and 
11. However, looking at the difference between indices of nonlinear forces of two DOFs, the 
nonlinear force can be considered as a localized grounded nonlinearity at DOF 11.  Using 



J. Taghipour et al. / Journal of Theoretical and Applied Vibration and Acoustics 6(1) 35-50 (2020) 

48 

 

the results of the localization process, the type of nonlinearity can be identified via 
different identification methods.  

 

 
Fig. 8: The measured nonlinear dynamics of the system captured using a high amplitude vibration test. |𝑨𝟏|, |𝑨𝟐|, 

and |𝑨𝟑| represent the amplitude of the accelerations respectively measured by three accelerometers. 

 
 

 
Fig. 9: Magnitude and phase of the reduced nonlinear force of the measured degrees of freedom. 
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Fig. 10: Indices of the nonlinear forces at the measured DOFs Fig. 11: Indices of the nonlinear forces at the suspect DOFs. 

6.Conclusion 

This study has aimed to detect the location of localized nonlinearity in structural dynamics using 

base excitation experiments. To this end, a localization method has been employed to localize an 

electromagnetic nonlinear force applied on the tip of a cantilever. A symmetric configuration of 

two pairs of electromagnets and permanent magnets generates a nonlinear force which is applied 

to the tip of the cantilever beam. For the purpose of localization, two types of vibration tests have 

been carried out. Low-amplitude test results were used to update the model of the underlying 

linear system of the structure, while the results of the high-amplitude test are required for the 

localization process itself. The results of the localization demonstrate the capability of the 

method utilized to detect the location of nonlinear elements in the structure under study. 
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