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     Accurate ultrasonic testing of engineering components like 

pressure vessels, which are subjected to extreme condition such as 

high stresses, high temperatures, and thermal gradients is important. 

Wave velocity and attenuation are two major parameters in ultrasonic 

testing. In this paper, a mathematical model is developed for 

calculation of the absolute attenuation of longitudinal waves in thick-

walled cylinders that are subjected to thermal gradients. The cylinder 

is assumed to be homogeneous and isotropic. The independent 

variables are cylinder inner and outer radii, incidence angle and 

temperature of the inner surface of the cylinder in the range of 300-

800 K. Based on the results obtained from the theoretical model, the 

wave attenuation is found to be highly sensitive to inner-surface 

temperature of the cylinder; however, the overall variation of the 

attenuation with respect to changes of the incidence angle and inner 

and outer radii of the cylinder is only 2 dB/m, which is ignorable in 

most practical applications. Furthermore, in the presence of a thermal 

gradient, there is an inverse relationship between the cylinder 

thickness and attenuation coefficient. The mathematical model is 

verified by using the experimental data available in the literature.   
© 2021 Iranian Society of Acoustics and Vibration, All rights reserved. 
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1. Introduction 

Ultrasonic testing is a versatile nondestructive testing method for detecting defects and 

determining the properties of materials. Two major parameters in ultrasonic testing are wave 

velocity and attenuation. Attenuation is the loss of energy of the wave during its propagation in a 

material and has several applications including sizing and detection of microcracks [1-3]. Joshi 
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and Green Jr [4] observed that attenuation of ultrasonic waves is very sensitive to a fatigue 

damage in its early stages of development. Birring et al. [5] investigated changes in velocity and 

attenuation of ultrasonic waves in low-alloy steels due to hydrogen attack. 

There are two types of attenuation, absolute attenuation and apparent attenuation. Apparent 

attenuation is comparative and relative; in other words, the shape of the specimen, the probe, and  

the coupling are remained unchanged while the amplitude of the back-wall echoes are compered 

[6]. Absolute attenuation is indicative of the intrinsic nature of the material and to measure it, 

specimen geometry, sound beam divergence, instrumentation, and procedural effects should be 

taken into account. These results can be achieved with more specialized ultrasonic equipment 

and techniques [7]. Absolute attenuation of ultrasonic waves depends on the chemical 

composition and microstructure of the material in which the wave propagates [8]. The material 

microstructure is a function of temperature; therefore, the absolute attenuation of ultrasonic 

waves is also a function of temperature. There are several studies on the effect of temperature on 

the attenuation of ultrasonic waves. Papadakis [9] investigated the effect of austenitizing 

temperature on the velocity and attenuation of ultrasonic waves in SAE 52100 steel. He found 

that the main reason for weakening of the waves in this type of steel is grain scattering. Bamber 

and Hill [10] investigated the effect of temperature on the velocity and attenuation of ultrasonic 

waves within the frequency range of 1-7 MHz in soft tissues of human body in a temperature 

range of 5-65 °C. Rajendran et al. [11] developed a low-cost setup for measuring the velocities 

and attenuation coefficients of ultrasonic waves in solids in a temperature range of 300-580 K. 

Thuy et al. [12] investigated the velocity and attenuation of longitudinal and transverse ultrasonic 

waves in X40H, S45, SCM420 and SCR420 steels in a temperature range of 0-50 °C. 

Thick-walled cylinders are widely utilized in different industries including petroleum and 

chemical industries. They usually work under extreme conditions such as high temperatures and 

high pressures. If hot fluids run through a pipe or chemical reactions take place within a cylinder, 

[13, 14], the inner surface of the cylinder becomes much hotter than its outer surface temperature 

and a thermal gradient is created across the cylinder wall. To accurately test these cylinders by 

ultrasonic method, the effect of thermal gradient on the attenuation coefficient should be taken 

into account. In the existence of a thermal gradient, the temperature is not the same at different 

points. Moreover, the absolute attenuation coefficient varies with temperature variations; 

therefore, when there is a thermal gradient, the attenuation coefficient differs at different 

locations. Ultrasonic testing of pipes can be carried out in either axial or circumferential 

directions [15].  

In this paper, a mathematical model is developed for estimating the absolute attenuation of 

ultrasonic longitudinal waves in a thick-walled cylinder which is under a thermal gradient during 

axial scanning. The effects of incidence angle, inner surface temperature and inner and outer 

radii of the cylinder on wave attenuation are also studied by using the developed model.  

2. Theory 

In this Section, we try to develop a mathematical model for variations of the absolute attenuation 

of ultrasonic waves. The two variables Ri and Ro are the inner and outer radii of the cylinder, 

respectively. The inside and outside temperatures are designated as Ti and To, respectively, where 

Ti > To. The temperature distribution is governed by the following equation [16]: 
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  ( )         
(1) 

where radius R lies somewhere between Ri and Ro. The boundary conditions for calculation of 

constant coefficients p and q are: 

  (  )     
(2) 

  (  )     (3) 

By using Eqs. (1) and (2), we have: 

  ( )     (
 

  
)     (4) 

Equation (4) is the radial temperature distribution across the wall thickness of the cylinder. By 

using Eqs. (3) and (4), the coefficient p is found to be: 

   
     

  (
  
  
)
 (5) 

The cylinder axial cross-sectional view and incidence angle γ are shown in Fig. 1. A longitudinal 

wave is transmitted into the cylinder and passes through a differential element dR which is 

located at radius R. 

 

Fig. 1. The cylinder axial cross-sectional view 

Due to the small thickness of the differential element, its temperature is considered to be constant 

and equal to T. The incidence angle and the refraction angle of the differential element are 

chosen as φ + dφ and φ, respectively [17]. As shown in Fig. 1, dL is the wave travel path inside 

the differential element. According to the geometry shown in Fig. 1, we can write:  

     
  

    
 (6) 

A negative sign appears in the right-hand-side of Eq. (6) because the two differential increments 

dR and dL are in opposite directions, i.e., radius increases upwards while travel path increases 

downwards. The wave attenuation coefficient inside the element is called α. The attenuation 

coefficient is a function of wave frequency f, and temperature T [8, 18]: 

    (   ) 
(7) 
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From Eqs. (4) and (7), we have: 

    (   ) 
(8) 

which gives the wave attenuation coefficient as a function of radius and frequency. The 

amplitudes of the waves at Ri and Ro are assumed to be Ai and Ao, respectively. As the 

ultrasonic wave travels through the wall of the cylinder, its amplitude decreases continuously; 

therefore, since the wave travels from the outer surface towards the inner surface of the cylinder, 

we get: 

  ( )    
(9) 

  (    )       
(10) 

In Eq. (9), A is the amplitudes of the waves at radius R. The wave attenuation coefficient, α, 

inside the element can be calculated from Eq. 11 [18]: 

     

 
   (   ) (11) 

Since dA and dL have opposite directions (amplitude increases upwards while travel path 

increases downwards), a negative sign appears in the power of the exponential term in the right-

hand-side of Eq. (11). The right-hand-side of Eq. (11) can be written as a power series [19]: 

 
      ∑

(    ) 

  

 

   

       
 

 
(   )  

 

 
(   )    (12) 

Since dL is infinitesimal, higher order terms tend to zero much more rapidly. By dropping the 

higher order terms and keeping the first two terms in Eq. (12), we have: 

 

             
(13) 

By placing Eqs. (6) and (13) in Eq. (11), we obtain: 

   

 
      

   

    
 (14) 

Now, by integrating Eq. (14) we have: 

 
∫

  

 

  

  

 ∫
   

    

  

  

 (15) 

which can be written as: 

 
  
  
  
 ∫

   

    

  

  

 (16) 

Using Snell’s law, the angle φ is determined from the following equation [17]: 

        (
  
  
    ) (17) 
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where, cs is the surrounding medium wave velocity and ce is the differential element wave 

velocity. The velocity ce can be calculated from [17]: 

 
     √(  

  

  
  
 

  
)(       

 

  
) 

(18) 

where, Eo and co designate Young's modulus and ultrasonic wave velocity at temperature To, 

respectively. The constant σ is the thermal expansion coefficient and β accounts for temperature 

effects on Young’s modulus. 

Let’s call the total path traveled by the wave along the cylinder axis Lγ-axial. The wave average 

attenuation coefficient in the axial direction is also called αγ-axial. The distance Lγ-axial can be 

calculated from [17]: 

 
         ∫  

  

    

  

  

 (19) 

the average absolute attenuation coefficient αγ-axial can be obtained from [18]: 

           
 

        
  
  
  

 (20) 

Combining Eqs. (16), (19) and (20), the average attenuation coefficient αγ-axial can be written as: 

 

         
∫

   
    

  
  

∫
  
    

  
  

 
(21) 

Equation (21) gives the average attenuation coefficient when there the cylinder experiences a 

thermal gradient.  

3. Results and discussion  

A cylinder which is made from structural steel is considered. The values of Eo and co are 

measured according to ASTM E494-15.  

Table 1. The values of Eo and co for structural steel at 295 K 

co-Longitudinal (m/s) Eo (Pa) Parameter 

5926.5 210.8×10
9 Value 

Table 2. Values of constant β [20] 

β (Pa/K) T (K) 

-52.76×10
6 295-400 

-62.36×10
6 295-500 

-74.84×10
6
 295-600 

-94.3×10
6
 295-700 

-125.88×10
6
 295-800 
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Table 3. Thermal expansion coefficient at different temperature ranges [21] 

σ (1/K) T (K) 

12.2×10
-6 273-373 

13.4×10
-6 273-673 

14.2×10
-6

 273-873 

 

Absolute (material) attenuation at 20 MHz for a longitudinal ultrasonic wave traveling in 

structural steel at various temperatures is given in Table 4. 

Table 4. Absolute attenuation of structural steel at different temperatures [8] 

α (dB/m) T (K) 

4 290 

8 378 

12 441 

18 506 

28 645 

30 728 

37 796 

37 878 

38 923 

44 961 

52 992 

 

Using Chauvenet’s criterion [22], we found that one of the data points in [8] was an outlier and 

therefore, it was removed from Table 4. By fitting a line to the data given in Table 4, we get: 

(22)  ( )                    (         )                    

The correlation coefficient, r, for this linear fit is 0.985 and r
2
 = 0.9706, which indicates that the 

line fit for this data is reliable [22]. Water is assumed to be the medium surrounding the cylinder.  

3.1. Radii Ro and Ri 

To study the influence of variations of outer radius on αγ-axial, we set To = 300 K, Ti = 800 K, Ri = 

0.1 m and γ = 5°. Figure 2 shows the variations in αγ-axial as a function of outer radius Ro. 

Figure 2 shows that by increasing Ro in the range of 0.11-0.2 m, the attenuation of the 

longitudinal wave decreases slightly. The overall decrease is approximately 1.5 dB/m in axial 

scanning. If Ri is fixed as Ro increases, the difference between the distance traveled by the wave 

in regions with temperatures exceeding the average temperature becomes less than the distance 

traveled in regions with temperatures below the average temperature. [17]. On the other hand, 

from Eq. (22), the attenuation decreases as temperature decreases. Consequently, the attenuation 

coefficient αγ-axial decreases as Ro increases. To examine the effect of variations of Ri on αγ-axial, 

we set To = 300 K, Ti = 800 K, Ro = 0.2 m and γ = 5°. Figure 3 shows the variations in αγ-axial as a 

function of inner radius Ri. 
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Fig. 2. Variations in αγ-axial versus outer radius Ro  

 

 

 

 

Fig. 3. Variations in αγ-axial versus inner radius Ri  

Figure 3 shows that by increasing the inner radius Ri from 0.1 to 0.18 m, the attenuation of the 

longitudinal waves increases slightly, and the overall increase is approximately 1.5 dB/m. If Ro is 

fixed as Ri increases, most of the wave path falls within the regions whose temperature is more 

than the average temperature. [17]. On the other hand, from Eq. (22), the attenuation decreases 

with the decline of temperature and consequently, the attenuation coefficient αγ-axial increases as 

Ri is increased. From Figs. 2 and 3, there is an inverse relationship between cylinder thickness 

(ΔR) and attenuation coefficient αγ-axial; in other words, as the thickness of the cylinder increases 

in the presence of a thermal gradient, the attenuation coefficient decreases.  
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3.2. Incidence angle γ 

To study the influence of the incidence angle on attenuation coefficient αγ-axial, we set To and Ti 

equal to 300 K and 800 K and Ri and Ro equal to 0.1 m and 0.2 m, respectively. Figure 4 shows 

the variations of αγ-axial with respect to the incidence angle γ.  

 

Fig. 4. Variations of αγ-axial versus wave incidence angle 

The first critical angle for structural steel is 14.47°. Two regions can be observed in Fig. 4. In the 

first region, as incidence angle is increased (but still much less than the critical angle), the 

attenuation slightly decreases. In the second region, where incidence angle is approaching the 

critical angle, the wave attenuation declines more rapidly. As γ increases the travel path also 

increases and the difference between the distance traveled by the wave in regions with 

temperatures less than the average-temperature becomes longer than the distance traveled in 

regions with temperatures more than the average-temperature. Therefore, the attenuation 

coefficient αγ-axial decreases as γ increases. Furthermore, the overall decrease is approximately 2 

dB/m in axial scanning.  

 

Fig. 5. Variations in αγ-axial and ᾱ versus temperature Ti  
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3.3. Temperature Ti  

The influence of temperature Ti on αγ-axial is investigated when the temperature To is set to 300 K. 

The inner and outer radii and the incidence angle are taken as 0.1 m, 0.2 m, and 5°, respectively. 

In Fig. 5, αγ-axial and ᾱ (= (α(Ti)+α(To))/2) is plotted versus Ti.  

The values of σ and β are available for a range of 300-800 K; therefore, this temperature range is 

considered in Fig. 5. In Fig. 5, both αγ-axial and ᾱ increase with increase of Ti. When the 

temperature To is kept constant, by increasing Ti, the average temperature of the cylinder also 

increases. Equation (22) shows that the temperature and attenuation vary proportionally, i.e., as 

temperature increases, attenuation also increases. As a result, as Ti increases, the average 

temperature also increases and leads to an increase in attenuation. According to Fig. 5, the 

difference between αγ-axial and ᾱ also increases with increase of Ti, however in the temperature 

range considered, the maximum difference is only 1.8 dB/m (at Ti =800 K) which is not 

significant in practical applications and can be ignored (especially at lower temperatures): 

(23)           ̅  

Table 5. Comparison of the measured values of  ̅           and calculated values of           for Ri = 0.19 m 

       ̅           

(dB/m) 

          ̅        

(dB/m) 

 ̅ 

(K) 

   

(K) 
   
(K) 

No. 
% dB/m 

13 1 8  9 378 461 295 1 

7 0.8 12  12.8 441 587 295 2 

6 1.1 18  16.9 506 612 400 3 

9 2.6 28 25.4 645 790 500 4 

2 0.6 30  30.6 728 790 666 5 

6 2.2 37  34.8 796 800 792 6 

4. Verification of the model 

To verify the validity of the developed model, we consider Eq. (23) and the case of a normally 

incident wave (γ = 0). Since no experimental results are available for thick-walled cylinders in 

the literature, we use the experimental data reported in [8] for a plate made from structural steel.  

It should be noted that absolute attenuation is independent of work-piece geometry (at uniform 

and constant temperature) and depends on the intrinsic nature of the material [7].  Absolute 

attenuation coefficient,  ̅   is measured on a 20-mm thick steel plate at several different 

temperatures in [8]. The theoretical values of          and  ̅       are calculated from Eqs. (21) 

and (23) which were developed in Sections 2 and 3. Since [8] provides the values of  ̅ at several 

distinct temperatures, the values of  ̅          are presented at six different temperatures in 

Tables 5 to 7. In Tables 5-7, the temperatures Ti and To are chosen such that their mean value 

equals the mean temperature  ̅ reported in [8]. In Tables 5 to 7, the values of Ri and Ro are 
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chosen such that their difference (ΔR) is equal to the thickness of the plate, i.e., 0.02 m. A 

cylinder is thick-walled if its thickness is greater than 1/10 of its internal radius [23]. Therefore, 

considering the plate thickness of 0.02 m used in experiments, Ri should be equal to 0.2 m or 

less for the cylinder to be considered as thick-walled. We examine three different values of Ri 

which are 0.19, 0.1, and 0.02 (all less than 0.2 m) and find the values of          and compare 

them with experimental values of  ̅         . 

Table 6. Comparison of the measured values of  ̅           and calculated values of           for Ri = 0.1 m 

       ̅           

(dB/m) 

          ̅        

(dB/m) 

 ̅ 

(K) 

   

(K) 

   

(K) 
No. 

% dB/m 

11 0.9 8  8.9 378 461 295 1 

6 0.7 12  12.7 441 587 295 2 

7 1.2 18  16.8 506 612 400 3 

10 2.7 28 25.3 645 790 500 4 

2 0.5 30  30.5 728 790 666 5 

6 2.2 37  34.8 796 800 792 6 

Table 7. Comparison of the measured values of  ̅           and calculated values of           for Ri = 0.02 m 

       ̅           

(dB/m) 

          ̅        

(dB/m) 

 ̅ 

(K) 

   

(K) 

   

(K) 
No. 

% dB/m 

6 0.5 8  8.5 378 461 295 1 

1 0.1 12  11.9 441 587 295 2 

10 1.8 18  16.2 506 612 400 3 

13 3.5 28 24.5 645 790 500 4 

1 0.2 30  30.2 728 790 666 5 

6 2.2 37  34.8 796 800 792 6 

 

Tables 5 to 7 show that the model is in good agreement with experimental results for all 

considered temperature gradients. The maximum error is %13, but in most cases, errors are less 

than 10%. This error can be attributed mostly to the uncertainties in measurements.  

5. Conclusion 

In this paper, a mathematical model was developed for estimating the absolute attenuation of 

ultrasonic waves in thick-walled cylinders when the cylinder is experiencing a thermal gradient. 

The inner and outer radii, the incidence angle and the inner-surface temperature of the cylinder 
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were considered as independent variables and how they affect the ultrasonic wave attenuation αγ-

axial was studied. The outcome of the theoretical model was in good agreement with experimental 

results reported in the literature. From the theoretical results of the model, it can be stated that 

the wave attenuation is extremely sensitive to inner-surface temperature of the cylinder. 

Therefore, in practical applications, if considerable variations in observed in inner-surface 

temperature, the the thermal gradient should be taken into account in conducting the 

measurements. Furthermore, in the presence of a thermal gradient, there is an inverse 

relationship between cylinder thickness (ΔR) and attenuation coefficient αγ-axial. The overall 

variation of the attenuation with respect to the changes of the incidence angle and inner and outer 

radii of the cylinder is approximately 2 dB/m, which can be ignored in most practical 

applications.    
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