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In this paper, the flexural free vibrations of three dimensional micro beams are 

investigated based on strain gradient theory. The most general form of the strain 

gradient theory which contains five higher-order material constants has been applied 

to the micro beam to take the small-scale effects into account. Having considered the 

Euler-Bernoulli beam model, governing equations of motion are written by utilizing 

the Hamilton’s principle. Then, the state-space solution technique is used to find some 

solutions for natural frequencies of the beam under various boundary conditions. The 

numerical results show that the resonant frequencies are significantly dependent on 

the length scale parameter of the micro beam. The less the non-dimensional length 

scale is, the more deviation appears between results obtained for natural frequencies 

of micro shaft by strain gradient theory and classical continuum theory. Moreover, 

except for a micro shaft which is simply supported at both ends, the extra type of 

boundary conditions emerges from using strain gradient theory significantly affects 

the results. 
©2015 Iranian Society of Acoustics and Vibration, All rights reserved   

1. Introduction 

Thin beams are one of the most applicable structural elements extensively used in micro–electro-mechanical 

systems (MEMS), as sensors and actuators (Hall et al., 2006; Moser and Gijs, 2007; Boer et al., 2004). There are 

many applications such as vibration shock sensor, atomic force microscopes and resonant testing devices that 

dynamic mechanical behaviors of these beams are utilized for obtaining desired performance (Lun et al., 2006; 

Wang and  Hu, 2005; Roy and Mehregany, 1996). It is worth mentioning that the thickness of these beams is 

typically in the order of microns and sub-microns. This shows that for precise analysis of these structures the size 

effects should be addressed. This is due to fact that it has been experimentally verified that the length scale has 

profound effect on static and dynamic behaviors of micro beams (Fleck et al., 1994; Lam et al., 2003; McFarland 

and Colton, 2005).  

The necessity for including size dependency in dynamic mechanical behaviors of the micro beams hinders 

researchers to use the classical continuum mechanics theory. As a result, utilizing non-classical continuum theories 

such as couple stress and higher- order gradient theories, which are able to interpret the size-dependencies of 

structures, have been growing in the last decade in the field of micro mechanics. In this regard, Aifantis (1999) 

proposed a model to interpret size effects in deformation and fracture of beam under torsion and bending by 

applying the simple theory of gradient elasticity. Based on this model, Beskou et al. (2003a; 2003b) investigated 

dynamic behavior of Euler-Bernoulli micro-beam. They illustrated the size dependencies of natural frequencies for 

all modes. In addition, the resonant frequencies of a micro beam have also been computed using couple theory by 

Kang and Xi (2007). Their results show that the resonant frequency is size dependent. Kong et al. (2008) also 
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investigated the size dependencies of natural frequencies of Euler-Bernoulli micro beams by using the modified 

couple stress theory which requires only one additional internal material length scale parameter.  

On the basis of strain gradient elasticity theory, the static and dynamic of micro beams are analyzed by Kong et al. 

(2009) considering Euler-Bernoulli beam model and Wang et al. (2010) using Timoshenko model. It should be 

noted that in this theory, there are three independent higher-order materials length scale parameters for isotropic 

linear elastic materials, as well as higher order differential terms in governing equations of the motion. The results 

show that natural frequencies obtained for a cantilever beam are dependent on higher-order materials length scale 

parameters.  

Furthermore, Asghari et al. (2010a) investigated the size-dependent behavior of functionally graded micro beams 

based on modified couple stress theory. On the basis of this theory, the nonlinear forms of equations of motion have 

also been developed by Asghari et al. (2010b) and Ke et al. (2010) for Timoshenko beam and Xia et al. (2012) for 

Euler-Bernoulli beam. Besides that, the size-dependent behavior of functionally graded micro beams based on the 

strain gradient theory have also inspected by Ansari et al. (2011, 2013) for Timoshenko beam and Kahrobaiyan et al. 

(2012, 2013) for Euler-Bernoulli beam. On the basis of this theory, the nonlinear forms of equations of motion have 

also been developed by Asghari et al. (2012), Kahrobaiyan et al. (2011) and Ghayesh et al. (2013) for Euler-

Bernoulli beam and Ramezani et al. (2012) for Timoshenko beam.  

Although many models and formulations have been proposed by researchers to show the size dependencies of micro 

beams, unfortunately no solutions are presented for natural frequencies that is capable to cover all boundary 

conditions, when strain gradient theory is employed. As a consequence, in this paper, the state-space solution 

technique is used to find the semi-analytical solutions for natural frequencies of micro beams based on the most 

general form of strain gradient theory under various boundary conditions. A three dimensional micro beam for 

flexural vibration study is considered based on Euler-Bernoulli model.  The governing equations of the motion are 

derived based by using Hamilton’s principle. In a numerical example, the effect of variation of material length scale 

parameters on resonant frequencies of the micro beam is illustrated under various boundary conditions.     

 

2. Preliminaries 

Consider a three dimensional flexible and slender circular beam shown in Fig. 1 with radius of R and length L, 

whose axial axis is aligned with x direction of three-dimensional Cartesian coordinates (x, y, z). The coordinate 

system is located in the centroid of the cross section at one end of the beam. If u1, u2 and u3 denote displacement 

components in x, y and z directions, respectively, according to Euler-Bernoulli beam model, they are expressed as: 
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Fig. 1: A micro circular beam 

On the basis of the most general form of strain gradient elasticity theory, the strain energy density for a linear 

isotropic material with infinitesimal deformations can be represented by (Mindlin and Eshel 1968):   
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where the λ and μ are the Lame constants, and ai (i = 1, 2,…,5) are the material higher-order constants. If 

       2 2 2 2 2

1 2 3

2 2 2 2

2 1 0 1 2 142 1 24 15 , 15 2 , 4 15 2 , 3a a a al l l l l l l l l             and

 2 2

1 25 2 3a l l  , the strain density reduces the one used in strain gradient theory with three material higher-

order constants li (i = 0, 1, 2) which is adopted by many researchers of this field (See for example Ansari et al., 

2011; 2013).  Moreover, it should be noted that Lame constants are related to the Young modulus E and the Poisson 

ratio   as   1 2 1E        and  2 1E     . In addition, ij  and ijk  (i, j, k=1, 2, 3) are strain tensor 

components and the third order strain gradient tensor components respectively; these components can be written in 

terms of displacement components as follows: 

  
1

,
2

T      
 

ε u u ξ u  (3) 

3. Governing equations of the motion 

To derive governing equations of motion of the beam, the strain energy U and the Kinetic energy T of the beam 

should be determined. By substituting Eqs. (1) and (3) into Eq. (2), the strain energy of the beam with volume of V 

is expressed as: 
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where 21 1 3 4 5a a a a a     and   2

2 3 42 4 a a R       . 

Furthermore, the Kinetic energy of the beam can be obtained as follows:  
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in which ρ is the density, A is circular cross-section and I is  cross-section area-moment of inertia of the beam.   

Now, Hamilton’s principle is employed as: 

  
2

1

0,

t

t

T U W dt      (6) 

where W  is the work done by external forces acting on the micro beam during a virtual variation in the 

configuration of the beam and can be expressed as  
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 (7) 

Where ˆ
yV  and ˆ

zV  are the resultant shear forces in y and z directions caused by the classical stresses acting on a 

section of the shaft. In addition, ˆ
yM  and ˆ

zM  are the resultant moments in y and z directions, respectively, which 

1 2 3 4 5
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,
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are produced by the classical and higher-order stresses on a section. Moreover, ˆ h

yQ  and ˆ h

zQ  denote the higher-order 

resultants caused by higher-order stresses acting on a section. 

Performing mathematical operations in accordance with the variational calculus, we get the following equations for 

lateral motion of micro beam: 
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 (8) 

Moreover, different boundary conditions at each end of the beam defined as: 
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There are also other boundary conditions that emerge from using strain gradient theory which are defined as: 

 BC type 1: 
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2 2
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BC type 2: 
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4. Solution method 

To solve Eq. (8), at the beginning dependent and independent variables presented in this equations are Non-

dimensionalized by defining  ,v v R w w R  , 
4

1 ,t L   and x x L . Thus, Eq. (8) is rewritten as: 
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To obtain natural frequencies of the beam, the time-dependent part of displacements is considered in the following 

form:   
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in which ω, is the angular frequency. Substituting Eq. (15) into (14), we get the following set of ordinary differential 

equations. 
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In order to reduce the system of Eq. (16) to a state-space form, the components of the state vector Z(x) are defined as 

follows: 
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Thus, Eq. (16) is expressed in following form: 
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A
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where [A(ω)] is a (6×6) matrix, called coefficient matrix and is expressed as:  
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A formal solution to the Eq. (18) is given by: 
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Here {k} is a constant column vector associated with the boundary conditions while e
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where λi (i = 1, 2, . . . , 6) as a function of ω, denote the distinct eigenvalues of [A] while [S] denotes the matrix of 

eigenvectors of [A]. Substitution of Eq. (20) into the boundary conditions associated with the edges x = 0 and L 

results in a homogeneous system of equations,  

 0ij jM k   (22) 

In which i, j= 1, 2, …, 6. For nontrivial solution of Eq. (22), the determinant [M] should be zero: 

 0M   (23) 

Hence, the natural frequencies are those that result in satisfying Eq. (23). 

 

5. Numerical example 

To illustrate the effects of size-dependencies on resonant frequencies of the micro beam under various boundary 

conditions some numerical results are presented. The beam is assumed to be made of epoxy with 1.44E GPa , 

0.38   and 
31.22 10 kg m    (Lam et al., 2003). The material higher-order constants for epoxy were defined by 
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that the deviation of results between classical theory and strain gradient theory (SGT) dramatically increases, as R/l 

decreases.  
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(c) 

Fig. 2: The variation of (a) the first, (b) the second and (c) the third normalized natural frequency of simply 

supported-simply supported micro beam versus the dimensionless length scale parameter R/l for BC type 1, BC type 

2 and classical theory.    
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(c) 

Fig. 3: The variation of (a) the first, (b) the second and (c) the third normalized natural frequency of clamped-free 

micro beam versus the dimensionless length scale parameter R/l for BC type 1, BC type 2 and classical theory.    
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(b) 

(c) 

Fig. 4: The variation of (a) the first, (b) the second and (c) the third normalized natural frequency of clamped-clamped micro 

beam versus the dimensionless length scale parameter R/l for BC type 1, BC type 2 and classical theory.    
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 (c) 

Fig. 5: The variation of (a) the first, (b) the second and (c) the third normalized natural frequency of clamped-simply 

supported micro beam versus the dimensionless length scale parameter R/l for 

BC type 1, BC type 2 and classical theory.    

6. Conclusion 

On the basis of the most general strain gradient elasticity theory the flexural free-vibrations of three dimensional 

micro beams are studied analytically. Having considering the Euler-Bernoulli beam model, governing equations of 

motion are written by utilizing the Hamilton’s principle. Then, the state-space solution technique is used to find 

some solutions for natural frequencies of the beam under various boundary conditions.  The numerical results show 

that the resonant frequencies are significantly dependent on the length scale parameter of the micro beam. As the 

radius of the beam decreases, the deviation of results obtained for natural frequencies of micro beam by strain 

gradient theory and classical continuum mechanics theory increase. Moreover, except for a micro beam which is 

simply supported at both ends, the extra type of boundary conditions emerges from using strain gradient theory 

clearly affects the results. 
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