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A semi-analytical method is used to illustrate the behavior of a 
multimodal nonlinear electromechanical system which is under base-
excitation. System is considered as piezo-ceramic patches attached to 
a cantilever beam coupled to a resistive load. The cantilever beam is 
modeled as a nonlinear Timoshenko beam using Assumed Mode 
method and equations of motion are derived through Lagrange's 
equation. Nonlinear multimodal equations are solved with 
Complexification Averaging method and results are compared with 
numerical simulations. Arc length Continuation method is used to 
achieve frequency response of the system. Results are presented for 
different values of geometric and physical parameters and the effect of 
this variations are discussed. 
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1. Introduction 
Energy harvesting form ambient vibrations has been most heavily researched in the last decade  
because of its useful applications [1]. One of this applications is preparing the energy requested 
by small electronics like wireless sensors that are hard to reach and replacement of their battery 
is impossible. Although linear energy harvesters were proposed at first, later research indicated 
that the narrow band nature of these systems affects their efficiency [2]. Nonlinear energy 
harvesting systems are proposed as a solution to this problem [3].  

Mann and Sims [4] introduced an energy harvester which utilizes magnetic levitation in order to 
produce a system with a tenable resonance. The results indicated that response of the nonlinear 
system is in the large amplitude oscillations in wider range of frequencies relatively. In [5, 6], a 
Duffing oscillator for broadband piezoelectric energy harvesting is investigated experimentally 
and analytically. They used a cantilever piezoelectric beam as a nonlinear energy harvester. It is 
showed that, there is a region in which the system has three possible responses and there is jump 
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phenomenon in the frequency response capture of the system. It is showed that, the nonlinear 
system has broader frequency bandwidth over the linear one. In [7], Karami and Inman  
proposed a method to approximate electromechanical coupling as equivalent changes in damping 
and excitation frequency in order to simplify the analyses of energy harvesting systems. The 
method in this paper is verified by hybrid piezoelectric and electromagnetic energy harvester 
system in linear, softly nonlinear and bi-stable cases. They showed when an optimal resistant 
load is used, the amplitude of mechanical vibrations is the smallest. 
Some of researchers considered random excitations in order to examine the performance of the 
nonlinear energy harvesters. Daqaq [8] investigated energy harvesting of a unit-modal Duffing 
oscillator under white and color Gaussian noise and concluded that the mean output power of the 
harvester is not influenced by the stiffness-type nonlinearities, however other types of 
nonlinearities such as damping and inertia may be beneficial. Authors of [9] studied energy 
harvesting of monostable Duffing oscillator under Gaussian excitation. They examined the 
effects of spectral density of random excitation and the cubic nonlinearity on the output voltage. 
The results indicated that increases in the cubic nonlinearity led to increase in output voltage for 
reasonable larger excitation spectral density. However, for smaller density, output voltage 
slightly decreases with the increase in cubic nonlinearity. Masan and Daqaq in [10] investigated 
the influence of stiffness-type nonlinearity on the transduction of vibratory energy harvesters 
under band-limited noise. They considered the harvester as a bimorph clamped-clamped beam 
subjected to an axial load so as to analyse both pre-buckling and post-buckling configurations. 
The results pointed out that for small base accelerations both configurations produce maximum 
voltage when the centre of frequency of the excitation matches the tuned oscillation frequency of 
the harvester, regardless to the frequency bandwidth which means that the nonlinearity can be 
neglected in this case. Nevertheless, in larger excitation amplitudes maximum voltage variance 
will occur at larger or smaller frequencies due to different nature of nonlinearity (hardening or 
softening) in both configurations. 

In most former studies, energy harvesting systems are considered as uni-modal systems, 
however, a single-mode approximation underestimates the actual output power of the device [3] 
at the other hand multimodal systems' responses are in the larger amplitudes in a wider range of 
frequency over their single-mode counterparts. In this paper, an assumed-mode modelling of the 
bimorph piezoelectric energy harvester is presented and the effect of the number of the shape 
modes is investigated. The beam is modelled using Timoshenko beam theory and equations of 
motion derived using Lagrange's equation. In multimodal nonlinear case applying perturbation 
techniques is very complicated because there are lots of resonance frequencies that should be 
investigated separately and for higher number of modes it is impossible to use perturbation 
techniques. Because of this, nonlinear multimodal equations of motion is solved using 
Complexification Averaging Method. Frequency response captures are obtained through Arc 
Length Continuation Method. Effect of changing the number of shape modes, base acceleration, 
and piezoelectric patches’ length are given. 
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2.  Assumed-mode modeling of piezoelectric energy harvester 

2.1. Bimorph piezoelectric energy harvester and modeling assumptions 
Two piezoelectric patches are coupled to the upper and lower faces of the beam structure and 
perfectly conductive electrodes fully cover the piezoelectric patches and the electrodes are 
coupled to a resistive electrical load in a series configuration (Fig. 1). A tip mass is attached to 
cantilever con-figuration. The system is under base excitation and the base motion can be 
expressed as: 
 푤 (푡) = 푔(푡) (1) 

 

 
Fig. 1. Piezoelectric energy harvester configuration 

The longitudinal axis is denoted by 	푥  and the transverse axis by 푥 . 

2.2. Displacement field and energy terms 
The displacement field in Timoshenko model is [3]: 
 

푢 = −푥 Φ(푥 , 푡), 푢 = 0, 푢 = 푢 (푥 , 푡) (2) 

where 푢 , 푢  are the displacements in longitudinal and transverse directions and Φ(푥 , 푡) is the 
cross section rotation. The nonlinear strains are: 
 

푆 =
휕푢
휕푥 +

1
2

휕푢
휕푥 +

휕푢
휕푥 +

휕푢
휕푥 = −푥

휕Φ
휕푥 +

1
2
휕푢
휕푥  (3) 

 
푆 =

휕푢
휕푥

+
휕푢
휕푥

=
휕푢
휕푥

−Φ (4) 

The substructure beam stresses are: 

 
푇 = 퐸푆 = −퐸푥

휕Φ
휕푥

+
1
2
퐸

휕푢
휕푥

 (5) 

 푇 = 휅퐺 푆 = 휅퐺
휕푢
휕푥 − Φ  

 
(6) 
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where 퐸 and 퐺  are the elastic and shear modulus of the beam substructure. Stresses in 
piezoelectric layers are: 
 

푇 = 푐 푆 − 푒 ϵ = −c 푥
휕Φ
휕푥

+
c
2

휕푢
휕푥

+ 푒
푣
ℎ

 

 
(7) 

 
푇 = 푐 푆 − 푒 ϵ = −c 푥

휕Φ
휕푥 +

c
2

휕푢
휕푥 − 푒

푣
ℎ  

 
(8) 

 
푇

,
= 휅푐

휕푢
휕푥 −Φ  (9) 

where 푐  and 푒  are the shear modulus and effective piezoelectric stress constant of 
piezoelectric layers. According to equations (3-10), the total potential is: 
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푆 푇 푑푉 +
1
2
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1
4
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휕푢
휕푥
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휕푢
휕푥

+Φ − 2
휕푢
휕푥

Φ 푑푥  

 

+ 푐 퐼
휕Φ
휕푥 +

1
4퐴

휕푢
휕푥 − 푒 푄

푣
ℎ

휕Φ
휕푥 + 휅푐 퐴
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where 퐼 , 퐴 , 퐼 , 퐴  and 푄  are the second moment of area and cross section area of the 
substructure beam, the second moment of area, the cross section area and first moment of area of 
piezoelectric layer. Electrical load displacement in piezoelectric layers are [3]: 
 

퐷 = 푒 푆 + 휉 휖 = −푒 푥
휕Φ
휕푥 +

푒
2

휕푢
휕푥 − 휉

푣
ℎ  (11) 

 

퐷 = 푒 푆 + 휉 휖 = −푒 푥
휕Φ
휕푥

+
푒
2

휕푢
휕푥

+ 휉
푣
ℎ

 

 
(12) 

where 휉  is the permittivity of piezoelectric layer. The work of electric field in piezoelectric 
layers is: 
 

푊 =
1
2 휖 퐷 	푑푉 +

1
2 휖 퐷 	푑푉 = 푒 푄

푣
ℎ

휕Φ
휕푥 푑푥 + 휉 퐴

푣
ℎ  (13) 

The total displacement is: 
 

푢(푥 , 푡) = {−푥 Φ 0 푢 } + {0 0 푤 }  (14) 

The total kinetic energy according to (14) is: 
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푇 =

1
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휕푡 +

휕푤
휕푡 푑푉 + 2 휌 −푥
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휕푡 +
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1
2 휌 퐼

휕Φ
휕푡 + 퐴

휕푢
휕푡 + 푔̇ + 2

휕푢
휕푡 푔̇ 푑푥

+ 2 휌 퐼
휕Φ
휕푡 + 퐴

휕푢
휕푡 + 푔̇ + 2

휕푢
휕푡 푔̇ 푑푥  

(15) 

The Rayleigh dissipation function for external damping is: 
 

퐷 =
1
2
푐

휕푢
휕푡

훿(푥 )  (16) 

where 푐 is the damping coefficient. The non-conservative work in electric resistive load is: 
 푊 = 2푄푣 (17) 

where Q and v are the electrical load crossing resistance and voltage of each piezoelectric layer  

2.3. Assumed-mode method 
For Timoshenko beam first we define new parameter as: 
 훽 =

휕푢
휕푥 − Φ (18) 

Allowable test functions must satisfy natural and geometric boundary conditions. Displacements 
are rewritten with finite series as [4]: 
 푢 = 휙 (푥 )푞 (푡) (19) 

 훽 = 휓 (푥 )푝 (푡) (20) 

where: 
 휙 (푥 ) = cos훽 푥 − cosh훽 푥 −

cos훽 퐿 + cosh훽 퐿
sin 훽 퐿 + sinh훽 퐿

(sin 훽 푥 − sinh훽 푥) (21) 

 휓 (푥 ) = −sin 훽 푥 − sinh훽 푥 −
cos훽 퐿 + cosh 훽 퐿
sin훽 퐿 + sinh훽 퐿

(cos훽 푥 − cosh훽 푥) (22) 

where 훽 is the solution of: 
 1 + cos 훽퐿 cosh훽퐿 = 0 (23) 

2.4. Lagrange's equation and equations of motion 
The Lagrange equation is: 
 푑

푑푡
휕푇
휕푞̇ −

휕푇
휕푞 +

휕푈
휕푞 −

휕푊
휕푞 =

휕푊
휕푞  

 
푞 = {푞 , 푞 ,… , 푞 , 푝 , 푝 ,… , 푝 , 푣} 

 

(24) 

The dimensionless parameters are defined as, 
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휉 =

푥
퐿 , 푞 =

푞
퐿 , 푣̅ =

푉
푉 , 푔̅ =

푔
퐿 , 퐿 =

퐿
퐿 , 휏 = 푡

퐸퐼
휌 퐴 퐿 , 휌 퐴 = 	

휌 퐴
휌 퐴  

휌 퐼 =
휌 퐼
휌 퐼 , 퐶̅ =

푐퐿 퐴
퐸퐼

퐸퐼
휌 퐴 퐿  

(25) 

 

퐼 = 퐴 푟 , 푠 =
퐿
푟
,
퐴 퐿
퐼

=
퐴 퐿
퐴 푟

= 퐴̅ 푠 , 퐴̅ =
퐴
퐴

, 퐼 ̅ =
퐼
퐼
, 퐸 =

푐
퐸

퐺̅	و =
퐺
퐸

 (26) 

 
퐺̅ =

푐
퐸
	, 퐶 = 2푒 푣

푄
ℎ

퐿
퐸퐼

	, 퐶 = 푒
1

휉 퐴
푄
푉
, 푇 = 2

ℎ

휉 퐴 푅 퐸퐼
휌 퐴 퐿

 (27) 

The dimensionless dynamic equations of the system are: 
 

푑 푞
푑휏

푑휙
푑휉

푑휙
푑휉	

+ 푠 휙 휙 푑휉 + 2 휌 퐼
푑휙
푑휉

푑휙
푑휉	

+ 푠 휌 퐴 휙 휙 푑휉  

−
푑 푝
푑휏

푑휙
푑휉 휓 푑휉 + 2휌 퐼

푑휙
푑휉 휓 푑휉 + 퐶̅

푑 푞
푑휏 휙 휙 훿(퐿 ) 

+ 푞 푠
푑 휙
푑휉

푑 휙
푑휉 푑휉 + 2푠 퐸 퐼 ̅

푑 휙
푑휉

푑 휙
푑휉 푑휉  

+ 푞 푞 푞
1
2
푠

푑휙
푑휉

푑휙
푑휉

푑휙
푑휉

푑휙
푑휉

푑휉 + 푠 퐸 퐴̅
푑휙
푑휉

푑휙
푑휉

푑휙
푑휉

푑휙
푑휉

푑휉  

−푠 퐶 푣̅
푑 휙
푑휉 푑휉 = −

푑 푔̅
푑휏 푠 휙 푑휉 + 2푠 휌 퐴 휙 푑휉  

(28) 

 

−
푑 푞
푑휏 휓

푑휙
푑휉 푑휉 + 2휌 퐼 휓

푑휙
푑휉 푑휉  

+
푑 푝
푑휏 휓 휓 푑휉 + 2휌 퐼 휓 휓 푑휉

− 푞 푠
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푑 휙
푑휉 푑휉 + 2푠 퐸 퐼 ̅
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푑 휙
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+ 푝 푠
푑휓
푑휉

푑휓
푑휉 + 휅푠 퐺̅ 휓 휓 푑휉 + 2 푠 퐸 퐼 ̅

푑휓
푑휉

푑휓
푑휉 + 휅푠 퐺̅ 퐴̅ 휓 휓 푑휉

+ 푠 퐶 푣̅
푑휓
푑휉 푑휉 = 0 

(29) 

 
푑푣̅
푑휏 + 퐶

푑푞
푑휏

푑 휙
푑휉 푑휉 − 퐶

푑푝
푑휏

푑휓
푑휉 푑휉 + 푇푣̅ = 0 (30) 
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3. Complexifiaction averaging method 
As it was mentioned before, the nonlinear equations must be solved analytically to achieve 
frequency response captures. For the uni-modal case, perturbation analysis is used in previous 
works but it is useless for the multimodal case. Complexification averaging method [11] is used 
in this paper for solving the equations (28-30). For showing the procedure of complex averaging 
method, we will solve the uni-modal case. The multimodal case has a similar procedure. 
Equations of motion in uni-modal case are: 

 
푚 푞̈ + 푚 푝̈ + 퐶 푞̇ + 푘 푞 + 푘 푝 + 퐾 푞 − 훼푣̅ = 푓 cosΩ휏 (31) 

 
푚 푞̈ +푚 푝̈ + 푘 푞 + 푘 푝 + 훽푣̅ = 0 (32) 

 
푣̇̅ + 휆 푞̇ − 휆 푝̇ + 푇푣̅ = 0 (33) 

For solving equations (31-33) new variables are defined as [4]: 
 

Ψ = 푞̇ + 푗Ω푞 	, Ψ = 푝̇ + 푗Ω푝 , Ψ = 푣̇̅ + 푗Ω푣̅, 푗 = √−1 (34) 

As a result: 
 

푞 =
Ψ −Ψ∗

2푗Ω
, 푞̇ =

Ψ + Ψ∗

2
, 푞̈ = Ψ̇ − 푗Ω

Ψ +Ψ∗

2
,푝 =

Ψ −Ψ∗

2푗Ω
, 푝̇ =

Ψ +Ψ∗

2
 

(35) 

푝̈ = Ψ − 푗Ω
Ψ +Ψ∗

2
, 푣̅ =

Ψ −Ψ∗

2푗Ω
, 푣̇̅ =

Ψ +Ψ∗

2
 

where ∗ shows the complex conjugate of the variable. Solutions of Ψ , Ψ  and Ψ  in the complex 
averaging method is considered a harmonic with the same frequency of actuation as: 

 
Ψ (휏) = Φ (휏)푒 , Ψ∗(휏) = Φ∗(휏)푒 ,Ψ (휏) = Φ (휏)푒 , 

 
Ψ∗(휏) = Φ∗(휏)푒 ,Ψ (휏) = Φ (휏)푒 ,Ψ∗(휏) = Φ∗(휏)푒  

(36) 

Substituting (36) into (35) and substituting the result in equations (31-33) and considering only 
the slow terms leads to: 

 

푚 Φ̇ +
푗ΩΦ
2

+ 푚 Φ̇ +
푗ΩΦ
2

+
퐶
2
Φ − 푘

푗Φ
2Ω

− 푘
푗Φ
2Ω

− 3푘
푗Φ∗Φ
8Ω

+ 훼
푗Φ
2Ω

=
푓
2

 (37) 

 

푚 Φ̇ +
푗ΩΦ
2 +푚 Φ̇ +

푗ΩΦ
2 − 푘

푗Φ
2Ω − 푘

푗Φ
2Ω − 훽

푗Φ
2Ω = 0 (38) 

 
Φ + 휆 Φ − 휆 Φ − 푇

푗Φ
2Ω = 0 (39) 

For steady state condition, equations (37-39) lead to algebraic equations that can be solved easily 
and solving them results in the limit cycle oscillations of primary system. Multimodal equations 
of motion can be solved with a similar procedure. 
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Fig. 2. Validation of the result of complex averaging method 

4. Results and discussion 
In order to validate the response of the system, a numerical simulation using the Runge-Kutta 
method is compared with the response achieved by complexification averaging method. Fig. 2 
shows the high accuracy of the method in steady-state response of the system. Solving the 
algebraic equations achieved from the complex averaging method leads to the amplitude of the 
limit cycle oscillations. Therefor, for frequency response captures, these algebraic equations 
should be solved for a range of frequencies but this work could be impossible or time consuming 
for some frequencies. Hence, the Arc-length Continuation method is used. Values of geometric 
and material properties of the system are showed in the Table 1 [12]. 

Table 1. Geometric and material properties 

Name Symbol Value 

Beam thickness ℎ  0.2푒 − 3	(푚) 
Piezoelectric layer thickness ℎ  0.2푒 − 3(푚) 
Beam and piezoelectric width 푤  25.4푒 − 3	(푚) 
Beam length 퐿 200푒 − 3	(푚) 
Piezoelectric layer length 퐿  80푒 − 3	(푚) 
Young's modulus of Beam 퐸 70푒9	(푝푎) 
Young's modulus of piezoelectric layer c  60푒9	(푝푎) 
Shear modulus of beam 퐺 26.9푒9	(푝푎) 
Shear modulus of piezoelectric layer 푐  25.2푒9	(푝푎) 
Shear stress correction coefficient 푘 5/6 
Resistance of resistive load 푅 4.5푒5	(Ω) 
Piezoelectric permittivity constant of 휉  25.55푒 − 9	(퐹/푚) 
Effective piezoelectric constant 푒  −16.6	(퐶/푚) 
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Fig. 3. Effect of number of shape modes on amplitude of vibration 

Fig. 3 shows that the solution is converged in more than two mode shapes. Fig. 4 shows that the 
uni-modal case can't predict the second, third and higher resonance peaks of the response. In the 
uni-modal case, there is a region that three different amplitudes are available. However, in the 
multimodal case, there is a region that five different amplitudes are available. Fig. 5 shows the 
stability analysis of the frequency response of the system. It indicates that the response of 
medium range amplitude is unstable and the two others are stable. 
 
 

 
Fig. 4. Effect of number of shape modes on output voltage 
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Fig. 5. Stability analysis of the frequency response 

As it can be seen in Fig. 6, increase in the length of the beam results in increase of output voltage 
and decrease in vibration amplitude . It is an obvious result because the rate of strain is more in 
the root of the beam. Fig. 7 shows that in higher base acceleration, both end deflection vibration 
and output voltage are higher because more energy is applied to the base of the system. 

 

 

  
Fig. 6. Effect of piezoelectric layers length on the amplitude of end deflection and output voltage 
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Fig. 7. Effect of base acceleration on the amplitude of end deflection and output voltage 

5. Conclusion 

A cantilever beam is modeled as a Timoshenko beam using Assumed Mode Method in this 
paper. The derived equations of motion are solved using the Complex Averaging Method. 
Frequency response captures are achieved using the Arc-length Continuation method. Frequency 
captures are provided for different values of problem parameters and it is understood that: 

1. Unimodal consideration can't predict the behavior of the system correctly and the solution is 
converged in more than two mode shapes of vibration. 

2. Increasing base acceleration results in increasing amplitude of vibration and output voltage. 

3. Power generation is maximum when the ends of the piezoelectric layers are close to the root of 
the beam. 
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