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In this paper, an iterative technique is proposed to solve linear integrated 
active/passive design problems. The optimality of active and passive parts 
leads to the nonlinear algebraic Riccati equation due to the active parameters 
and some associated additional Lyapunov equations due to the passive 
parameters. Rather than the solution of the nonlinear algebraic Riccati 
equation, it is proposed to consider an iterative solution method based on the 
Lyapunov equations in the Newton optimization scheme for both active and 
passive parameters. The main contribution of the paper is considered as the 
concept that it doesn't require to optimize controller when the plant is not 
optimal. The proposed method is verified by designing a one-quarter active 
suspension system. The results indicate that the algorithm is more efficient 
as compared to solving the problem through the direct Riccati solution based 
method while its derivation and application is simple. Significant 
improvements can be seen in comparison to the previous method. 

©2015 Iranian Society of Acoustics and Vibration, All rights reserved 

1. Introduction 

Considering the coupling between passive dynamics (the physical system) and active dynamics 
(the associated control system) plays a critical role in the modern design methodology and it is 
called Integrated Passive and Active Design (IPAD). The term ‘integrated’ means simultaneous 
consideration of methodologies in the design. The IPAD connects the passive and active designs 
whereas they were separated and conventionally designed in the sequential manner. In this 
sequential method, first, the passive parameters are designed. Then the passive variable set is 
considered fixed and the controller is designed [1]. It is prominent that in some cases, the IPAD 
enables solving some previously unsolvable problems especially for systems with strong 
coupling such as flexible robotics and vibration control systems.  

Optimization is the main methodology of the engineering design and it can be considered as a 
main paradigm in the IPAD. From the mathematical point of view, it can be stated as a 
deterministic optimal control problem (OCP) with some additional subproblems related to the 
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design of passive parameters. For full information, in an unconstrained, infinite horizon, linear 
system with a quadratic cost function, the optimal control becomes a linear feedback of the states 
associated with the standard Algebraic Riccati Equation (ARE). Based on the OCP, the IPAD 
problem was first considered by Hale et al. [2] for flexible satellite control in where an open-loop 
control scheme was applied. As an indirect and ARE-based OCP, Salama et al. [3] eliminated 
control design variables by considering sensitivity equations of ARE with respect to the 
parameters, namely Lyapunov equations (LE). This method is extended by Haftka et al. [4] to 
minimize the control effort through structural changes while maintaining specified damping 
ratios. Bodden and Junkins [5] minimized some unspecified robustness measures while placing 
closed-loop eigenvalues in a desired region. Canfield and Meirovitch [6] used mode 
decomposition for simplifying the structure to a number of two order systems and by using 
optimization problem for these systems through LE, still solved the OCP by the ARE. Alisson 
and Han [7] proposed simulation based IPAD that needs integration to compute the cost. From 
the analytical point of view, any simulation-based method should be avoided since they need 
several computations due to the integration. 

In this paper, an extension to the well-known Kleinman's [8] method for the solution of ARE 
based on the Newton algorithm is proposed to solve the IPAD problem with application to the 
suspension system. The Kleinman’s algorithm uses a simple LE solution to improve the 
controller. In the Salama’s iteration [3], the solution of ARE and some sensitivities with respect 
to the design parameters are needed. Since in every step the plant is not optimal, there is no 
evidence to optimize the controller. This concept has motivated the authors to use sensitivity of 
LE associated with the Kleinman’s algorithm in control improvement. The proposed method 
presents a very simpler equation in comparison to Salama iterations. The method is intentionally 
simple and easy to apply and its efficiency is shown by simulation. 

2. Problem Formulation 

2.1. Dynamic equations of the linear mechanical system 

Consider a linear mechanical system as a plant subjected to the known initial conditions q(0)=q0 
and q �(0)=q�0. Dynamic equations which include a force vector u(t)∈ℝm for controlling the 
dynamic response q(t)∈ℝnq are: 

 ( ) ( ) ( ) ( )+ + =M p q C p q K p q E p u&& &  (1) 

where M, C and K∈ℝnq×nq denote the mass, damping and stiffness matrices respectively, 
E∈ℝnq×m denotes the actuator distribution matrix and p∈ℝnp denotes the parameters vector. Eq. 
(1) can be rewritten in the state space form as, 

 ( ) ( )= +x A p x B p u&  (2) 

where x∈ℝn (n=2nq) denotes the state vector defined by x=(qT, q �T)T while x0=(q0
T, q �0

T)T is the 
known initial state, A∈ℝn×n and B∈ℝn×m are the system and the control matrices stated as 
follows. 

 
( ) ( )1 1 1,− − −

   
= =   − −   

0 I 0
A p B p

M K M D M E
 (3) 
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Classic design of systems are performed by optimization of the plant first, and then, the optimal 
control for the optimized plant is considered which can be stated as, 

 ( ) ( )* *
Classic P Cmin min ,V J J= +

p u
p p u  (4) 

where V denotes the overall cost, J denotes the cost function with subscript P for the passive 
parameters and C for the controller. 

Performing the IPAD means combining the above separated optimizations as, 

 ( ) ( )**
IPAD P C

,
min ,V J J = + p u

p p u  (5) 

The IPAD for linear systems is reduced to finding a static feedback controller that minimizes the 
next quadratic performance index in the control and the state as, 

 ( ) ( ) ( ) ( )( )0 1 P 2 0

T TV w J w dt
∞

= + +∫x p x Q p x u R p u  (6) 

subject to Eq. (2) where Q∈ℝn×n and R∈ℝm×m are positive definite weighing matrices, w1,2≥0 are 
compromising parameters that should be selected properly to define a truthful cost.  

2.2. Cost evaluation 

The controller is considered as a linear feedback as u=-kx and the fitness (6) can be restated as 

 ( ) ( ) ( )
0 0

T TV t m dt
∞

= + +∫k p x Q k Rk x  (7) 

where ( ) ( )1
P

2

w
m J

w
=p p . Substitution of the closed loop trajectory 

( )
0

t
e

−= A Bk
x x  where x0 

is the test initial state in the Eq. (7), leads to, 

 ( ) ( )
0 0 0

TV t m= +k p x Px  (8) 

where the matrix P≥0 is satisfying the following LE, 

 ( ) ( )T T= − + − + +0 A Bk P P A Bk Q k Rk  (9) 

where it can be solved by using efficient numerical methods (see the introduction). It is well-
known that the application of the necessary conditions w.r.t the gain matrix k expresses its 
optimum as the Kalman's gain, 

 1 T−
∞ ∞= −k R B P  (10) 

where P∞ is the solution of the following ARE, 

 1 0T T −
∞ ∞ ∞ ∞+ − + =A P P A P B R BP Q  (11) 

2.3. Salama iteration to find of optimal parameters 

Local minimization of (8) w.r.t the parameter vector p can also be applied by using Salama [3] 
iteration as, 

 ( ) ( )1
1 2

0 0 0 0
i i T Tm mα

−+  = − ∇ + ∇ + p p x Px x Px  (12) 
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where ∇ is the gradient operator, α is the convergence rate adjusting parameter and it should be 
lower than a certain value  [3].  

The gradient and hessian matrices can be stated as, 

 ( ) ( )

( ) ( )

0 0 0 0 0 0

2 2
2 2 2

0 0 0 0 0 0

,

,

T T T

i i

T T T

j i j i

m
m m

p p

m
m m

p p p p

 ∂ ∂∇ + = ∇ + ∇ = + ∂ ∂ 

 ∂ ∂∇ + = ∇ + ∇ = + 
∂ ∂ ∂ ∂  

P
x Px x Px x x

P
x Px x Px x x

 (13) 

where the term 
ip

∂
∂

P
 can be found by taking derivation of ARE(11) as follows, 

 
0=′+

∂
∂+

∂
∂

QA
PP

A c
ii

T
c pp

 (14) 

where 

 
c = +A A Bk  

, ,

T

c i c i

i
p

∂
′ = + +

∂

Q
Q A P PA  

1 1
,

T

c i
i i i ip p p p

− −∂ ∂ ∂ ∂= + − −
∂ ∂ ∂ ∂

A B R B
A k BR k BR P  

(15) 

It is evident that the second derivation can be found by repeating the above process. It follows, 

 
0

22

=′′+
∂∂

∂+
∂∂

∂
QA

PP
A c

ijij

T
c pppp

 (16) 

where  

 

ij
jicic

jj

T
icjc

ii

T
jc

ij

T

pppppppp ∂∂
∂++

∂
∂+

∂
∂+

∂
∂+

∂
∂+

∂∂
∂=′′ Q

PAA
PP

AA
PP

AP
A

Q
2

,,,,,

2

 

1 1
, ,

T

c j
j j j jp p p p

− −∂ ∂ ∂ ∂= + − −
∂ ∂ ∂ ∂

A B R B
A k BR k BR P

 
2 2

1 1 1 1
,

2
1 1 1 1 1 1

2
1 1 1 1 .

T T T

c ji
j i j i j i j i

T

i j i j j i i j

T

j i j i i j j i

p p p p p p p p

p p p p p p p p

p p p p p p p p

− − − −

− − − − − −

− − − −

∂ ∂ ∂ ∂ ∂ ∂= + − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂+ + − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂− − − +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

A R B B B B
A BR R P BR P R P

R B R R R B R
BR R P BR R k BR k R k

R R B R B B B
BR R k R k R P k

 

(17) 

Not surprisingly, Eqs. (14) and (16) become the LEs. 
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2.4. The proposed method: Extended Kleinman iteration 

Since the ARE is a nonlinear matrix equation in P, it is mostly preferred to use the Kleinman 
iteration by iteratively solving of LE (9) which is linear in P and then improving the controller 
by Eq. (10). The restriction to this method is the necessity of the stability insurance in the 
initialization step. In IPAD, in each iteration of Eq. (12), the passive parameters are altered and 
thus the stability check should be done in each step (as in applied using barrier function in the 
section 2.4.1). The Kleinman algorithm inherently is the Newton iteration [9]. Therefore by 
mixing of the two Newton iteration one for the passive parameters optimization and next for the 
controller, the IPAD can be applied. The major advantage of this solution is getting involved 
with linear system of equations comparing with (11) the simpler equations comparing with (14) 
and (16) which leads to have a smoother variations. Derivation of LE(9) w.r.t the parameter pi 
leads to the following LEs: 

 ( ) ( )0
T

i ip p

∂ ∂ ′= − + − +
∂ ∂

P P
A Bk A Bk Q  (18) 

where , ,
T T
c i c i

i ip p

∂ ∂′ = + + +
∂ ∂

Q R
Q A P PA k k  and ,c i

i ip p

∂ ∂= −
∂ ∂

A B
A k . Note that Eq. (18) is less 

complicated than Eq (14). To find the hessian matrix, another derivation is taken from Eq. (18) 
w.r.t the parameter pj and then, 

 
( ) ( )

2

0
T

ij
j i j ip p p p

∂ ∂ ′′= − + − +
∂ ∂ ∂ ∂

P P
A Bk A Bk Q  (19) 

where 

2 2

, j , , , , ,
T T T T

ij c c j c i c i c ji c ji
i i j j j i j ip p p p p p p p

∂ ∂ ∂ ∂ ∂ ∂′′ = + + + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

P P P P Q R
Q A A A A A P PA k k

 and 

2 2

,c ji
j i j ip p p p

∂ ∂= −
∂ ∂ ∂ ∂

A B
A k . 

This application of necessary condition needs to solve number of np  LEs for first and np×np LEs 
for second derivatives. Then the conjugate gradient algorithm leads to local optimal solutions. 
See that the optimal passive dynamics design as a special case means k=0. 

The extended Kleinman’s algorithm proposed for IPCD of unsaturated linear plants 

1. Initialization (i=0): Suggest a stabilizing controller k0 for initial plant (A0, B0) and compute the 

weighing matrices R0 and Q0. 

2. Compute the cost by solving LE (9). 

3. , ,
T T
c i i i c i i i i i+ + + =A P PA Q k R k 0 . 

4. Using parameter update law(12), improve the plant as, 

11
0 0 0 0

i i T T
rs rs r rm mα

−+    = − + +   p p x P x x P x , 

in which rP can be found by solving the LE (18) and rsP  can be found by solving the LE (19). α  

should be found so that the solution of 
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 ( ) ( )1 1 1 1 1 1

T T
i i i i i i i i i i i i+ + + + + +′ ′− + − + + =A B k P P A B k Q k R k 0  (20) 

satisfies the inequality 0i i′≥ ≥P P . 

5. Update the matrix by optimal policy again, 

 1
1 1 1

T
i i i i

−
+ + + ′=k R B P  (21) 

5. If 1i i ε+− <k k then end, else i→i+1 and goto 2 

2.4.1. Stability barrier function 

In every iteration of the above Newton iteration, the stability of the closed loop must be ensured. 
The stability condition can be stated as, 

 ( )maxRe 0λ δ− + <A Bk  (22) 

where δ is a small value to construct a boundary of exponential decay rate. This condition can be 
introduced as a barrier penalty function to the optimization process as, 

 ( ){ }exp maxReJ a λ δ+  = − + A Bk  (23) 

where a is a big number to have a rough penalty. It can be optimized by simple gradient descent 
algorithm and it adds a following alteration to Eq. (12) as, 

 
i i

i

J
p p

p
β +∂

= −
∂

 (24) 

where 
*

2
j ja aj j j

i i i i

J a
a e e

p p p p

λ δ λ δλ λ λ   ℜ − ℜ −+    
 ∂ℜ ∂ ∂∂

= = +  ∂ ∂ ∂ ∂ 
. To find the term j

ip

λ∂
∂

 where 

j≔argmax(ReλT)  and it can be written as [5], 

 
,y x

y x

T
j j c i j

T
i j jp

λ∂
=

∂
A

 (25) 

where x and y are right and left eigenvectors of Ac, closed loop gain matrix defined in Eq. (14) 
and Ac,i is defined in (18). The term doesn’t let to get into the unstable area (left half plane). 

2.5. Proof of convergence 

The following theorem is intended to prove the convergence.  

Theorem 1. Iteration on the plant and the controller is uniformly convergent if: 

(i) The modified plant with controller ki is still stable. 

(ii) The plant modification does not increase the cost. 

Proof.  We define a Lyapunov product as * T T= +A B A B B A . The condition (i) is equivalent to 

the existence of a matrix P′ which satisfies the LE (20). Also, from condition (ii), we have 

0 0 0 0 0T T
i i′− ≥x P x x P x  so, 
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 0i i′− ≥P P  (26) 

Then assuming condition (i) and Eq. (26), it is possible to find a matrix as Q′≥0 where, 

 ( ) ( )1 1i i i i i+ + ′ ′− ∗ − = − ≤A B k P P Q 0  (27) 

Now consider the Lyapunov function 
T

iV ′= x P x . Derivation along the plant/controller 

perturbed trajectory as considering of condition (i), 

 ( )1 1 1
T

i i i iV + + + ′ = − ∗ x A B k P x&  (28) 

Using Eq. (A2.4), it can be rewritten as, 

 ( ) ( )( )1 1 1 1
T

i i i i i i i iV + + + + ′ ′= − ∗ + − ∗ x A B k P B k k P x&  (29) 

Using Eq. (20) it is possible to write, 

 ( ) ( )1 1 1 1
T T T

i i i i i i i iV + + + +
 ′= − − + − ∗ x Q k R k k k B P x&  (30) 

Now by substituting the update law for the controller in Eq. (21) and expanding it, say,  

 ( ) ( )

( ) ( )

1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

2

0.

T T
i i i i i i i i

T T T T T
i i i i i i i i i i i i i

TT T
i i i i i i i i i

V + + + + +

+ + + + + + + + +

+ + + + + + +

 = − − + − ∗ 

 = − − + − + 

 = − − − − − ≤
 

x Q k R k k k R k x

x Q k R k k R k k R k k R k x

x Q k k R k k k R k x

&

 (31) 

Therefore, if the modified system remains stable, then the controller modification is 

monotonically decreasing. Now, we prove that condition (ii) is sufficient to have monotonic 

plant convergence. To see this, suppose the following Lyapunov function 
T

iV = x P x . In the 

modified plant trajectory with controller ki it can be differentiated as, 

 ( )
( ) ( ) ( )
( ) ( ) ( )

1 1

1 1 1 1 1 1

1 1 1 1

,

,

.

T
i i i i

T
i i i i i i i i i i i i

T
i i i i i i i i i

V + +

+ + + + + +

+ + + +

 = − ∗ 

′ ′ = − ∗ − − ∗ + − ∗ 

′ ′ = − ∗ − + − ∗ 

x A B k P x

x A B k P A B k P A B k P x

x A B k P P A B k P x

&

 (32) 

Using Eq. (27), it can be written as, 

 
1 1 0.T T

i i i iV + +′ = − − − ≤ x Q Q k R k x&  (33) 

This completes the proof.  

3. Optimal active/passive suspension design 

3.1. Mathematical modelling of the system 

Considering the heave motion of the body only, it should have one DOF. An active suspension 
control system model is shown in Fig. 1. The suspension system can be sketched as a 2 DOF 
rectilinear mass-spring-damper system. The aim is minimization of body movement when the 
abrupt input to the system is applied due to the vertical irregularities along the road as w. This 
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can be done by selecting appropriate controller u(t), mainspring stiffness k2 and dashpot's 
strength c2. 

State vector is selected as x=[x1-w x2-w x�1 x�2]. The control input (u) is applied by usual 
pneumatic jack between the body of the automobile and the tires. The dynamic equation is: 

 

1 2 2 1 2 2

1 1 1 1 1

2 2 2 2

22 2 2 2

0 0 1 0 0

0 0 0 1 0

1
,

1

k k k c c c

m m m m m

k k c c

mm m m m

   
   
   
   + +
− − −= =   
   
   

− −   
  

A B  (34) 

where k2 and c2 are mainspring stiffness and damping coefficient of the suspension system and 
they are passive unknowns, m2 denotes the body mass, m1, (c1=0) and k1 are wheel parameters.  

The numerical values here is included in Table 1. 

 

Fig. 1: Case study: Active suspension system 

Table 1. Known passive parameters with 
no ability to design 

Parameter Values 
Sprung mass(m2) 288.9(kg) 
unsprung mass(m1) 28.58(kg) 

Tire stiffness(k1) 1.559×105(N/m) 
 

3.2. Simulations  

In this section, the optimization of the above suspension system is applied for the initial 
condition as an abrupt input in w as x0=[-0.1 -0.1 0 0]T. Full accurate state feedback is considered 
here and it means there is no problem with observation and measurement. 

To constrain the parameters to positive values we consider their squares in the system's dynamics 
as 2 2

2 1 2 2,k p c p= = . Then, by using exhaustive solving of the series LQR problems in the whole 

of the parameter space (p1, p2), Fig. 2 is generated. In this figure, it is shown that the optimal 
value of the parameters is located at (p1,p2)=(230.48,72.66) corresponding to 
(k1,c1)=(53121,5279.5). Therefore, it is sufficient to show that the algorithm proposed above will 
converge to these parameters. To check the stability max(ℜ(λmax) ) is shown in the Fig. 3. 
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Fig. 2: Cost map on the design parameters Fig. 3: Max-real of eigenvalue for closed loop 

The convergence of the passive and active parameters are shown in Fig. 4 and Fig. 5. In Fig. 6, 
the cost minimization is shown. In Fig. 7 parameter convergence is shown for contours of the 
cost map and it can be seen that the algorithm is rapidly converged to the their optimal values. In 
comparison to salama’s iteration, the proposed method run in 2.3s where the salama iteration was 
run in 12s. Thereupon, an improvement of 81% is obtained in the solution time. Note that the 
results are identical. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-500

0

500

iteration

k

 

 

k1

k2

k3

 

 
 

Fig. 4: Gain convergence Fig. 5: Parameter convergence 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.5

2

2.5

x 10
6

iteration

co
st

 

 

Fig. 6: Cost convergence Fig. 7: Convergence in the cost map 

For the optimized system, the initial response is shown in the following figures. 
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Fig. 1: States of the system in normal/optimal cases 
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Fig. 2: Comparing of control signals 

4. Conclusion 

In this article, the well-known Kleinman's [8] algorithm for solution of the ARE based on the 
Newton algorithm is extended. Then, it is proposed to find an appropriate passive parameters set 
integrated with the controller. This IPAD problem solving methodology is applied to a 
suspension system. The method has a straightforward scheme intentionally. Its efficiency is 
shown by simulations. The future work includes the extension of this method to optimal control 
of bilinear systems that appeared in the semi-active suspension systems with variable damping 
coefficient. The LEs can be solved for large scale systems with accessible packages such as 
MATLAB ® and this method can be applied on the integrated active/passive design of trusses and 
flexible systems such as shape design problems.  
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