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Integrated _ In this paper, an iterative technique is proposeddive linear integrated
active/passive design  ctive/passive design problems. The optimality @ifva and passive parts
Suspension system leads to the nonlinear algebraic Riccati equatios t the active parameters

and some associated additional Lyapunov equatiares td the passive
parameters. Rather than the solution of the noatirelgebraic Riccati

Riccati equation equation, it is proposed to consider an iteratolateon method based on the
Lyapunov equations in the Newton optimization schdar both active and
passive parameters. The main contribution of theep# considered as the
concept that it doesn't require to optimize cofdrolvhen the plant is not
optimal. The proposed method is verified by desigra one-quarter active
suspension system. The results indicate that taritim is more efficient

as compared to solving the problem through thectiRéccati solution based
method while its derivation and application is siep Significant

improvements can be seen in comparison to thequsvnethod.
©2015 Iranian Society of Acoustics and Vibratiotl rights reserved

Optimal control

Lyapunov equation

1. Introduction

Considering the coupling between passive dynanties ghysical system) and active dynamics
(the associated control system) plays a critickd o the modern design methodology and it is
called Integrated Passive and Active Design (IPADe term ‘integrated’ means simultaneous
consideration of methodologies in the design. T&D connects the passive and active designs
whereas they were separated and conventionallygmesiin the sequential manner. In this
sequential method, first, the passive parametersdasigned. Then the passive variable set is
considered fixed and the controller is designedIflis prominent that in some cases, the IPAD
enables solving some previously unsolvable problerspecially for systems with strong
coupling such as flexible robotics and vibratiomtrol systems.

Optimization is the main methodology of the engiiree design and it can be considered as a
main paradigm in the IPAD. From the mathematicainpof view, it can be stated as a
deterministic optimal control problem (OCP) withns® additional subproblems related to the
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design of passive parameters. For full informationan unconstrained, infinite horizon, linear
system with a quadratic cost function, the opticmitrol becomes a linear feedback of the states
associated with the standard Algebraic Riccati EQnaARE). Based on the OCP, the IPAD
problem was first considered by Hale et al. [2]ffexible satellite control in where an open-loop
control scheme was applied. As an indirect and AREed OCP, Salama et al. [3] eliminated
control design variables by considering sensitivityuations of ARE with respect to the
parameters, namely Lyapunov equations (LE). Thithatkis extended by Haftka et al. [4] to
minimize the control effort through structural cgas while maintaining specified damping
ratios. Bodden and Junkins [5] minimized some uci§pe robustness measures while placing
closed-loop eigenvalues in a desired region. Chlhfiend Meirovitch [6] used mode
decomposition for simplifying the structure to amher of two order systems and by using
optimization problem for these systems through &fifl solved the OCP by the ARE. Alisson
and Han [7] proposed simulation based IPAD thatieestegration to compute the cost. From
the analytical point of view, any simulation-basedthod should be avoided since they need
several computations due to the integration.

In this paper, an extension to the well-known Kheam's [8] method for the solution of ARE
based on the Newton algorithm is proposed to sthleelPAD problem with application to the
suspension system. The Kleinman’s algorithm usesingple LE solution to improve the
controller. In the Salama’s iteration [3], the dman of ARE and some sensitivities with respect
to the design parameters are needed. Since in stepythe plant is not optimal, there is no
evidence to optimize the controller. This concegt motivated the authors to use sensitivity of
LE associated with the Kleinman’s algorithm in cohtimprovement. The proposed method
presents a very simpler equation in comparisoratara iterations. The method is intentionally
simple and easy to apply and its efficiency is siéwy simulation.

2. Problem Formulation

2.1. Dynamic equations of the linear mechanicalesyis

Consider a linear mechanical system as a planestgg to the known initial conditiong0)=qo
and d(0)=do. Dynamic equations which include a force veagt)eR™ for controlling the
dynamic responsg(t)eR" are:

M (p)g+C(p)d+K (p)a=E(p)u @)

where M, C and KeR"¥ denote the mass, damping and stiffness matricgsectsgely,
E€R""™denotes the actuator distribution matrix ar@&R"” denotes the parameters vector. Eq.
(1) can be rewritten in the state space form as,

x=A(p)x+B(p)u (2)

wherexeR" (n=2ny) denotes the state vector definedxsyq’, d")" while xo=(qo’, do")" is the
known initial state, AeR™" and BER™™ are the system and the control matrices stated as
follows.

Alp)= {—Mo'lK % —Ml'lo} B(p) = {ﬁ} @)
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Classic design of systems are performed by opttinizaf the plant first, and then, the optimal
control for the optimized plant is considered whieim be stated as,
chlassic = mpin J P(p) + rnuln J C(p* ,U) (4)

whereV denotes the overall cost,denotes the cost function with subscript P for plassive
parameters and C for the controller.

Performing the IPAD means combining the above sgpdroptimizations as,
VI:AD = T‘iun[‘]»: (p)+ Je (p,u)] (5)

The IPAD for linear systems is reduced to findingtatic feedback controller that minimizes the
next quadratic performance index in the control tedstate as,

% (xo)=W1Jp(p)+W2J‘:(XTQ(p)x+uTR(p)u)dt (6)
subject to Eq. (2) whe@eR™" andReER™ ™ are positive definite weighing matriceg, >0 are
compromising parameters that should be selectguedsoto define a truthful cost.

2.2. Cost evaluation
The controller is considered as a linear feedbaak=akx and the fitness (6) can be restated as

Vi, (t)=m(p)+.|‘:xT (Q+kTRk)xdt (7)

where m (p) = VV% J-(p) - Substitution of the closed loop trajectoxy xoe(A - Bk)t wherexo

2
is the test initial state in the Eq. (7), leads to,

Ve, (t)=m(p)+x;Px, 8)
where the matri¥>0 is satisfying the following LE,
0=(A-Bk) P+P(A-Bk)+Q+k"Rk ©)

where it can be solved by using efficient numericathods (see the introduction). It is well-
known that the application of the necessary coomitiw.r.t the gain matrik expresses its
optimum as the Kalman's gain,

k,=-R™B'P, (10)

whereP,, is the solution of the following ARE,

ATP.+P.A-P.B'R'BP,+Q=0 (11)

2.3. Salama iteration to find of optimal parameters

Local minimization of (8) w.r.t the parameter vagiocan also be applied by using Salama [3]
iteration as,

piﬂ:pi —a|:|]2(m +XBPXO):|_1D(m+XBPXO) (12)
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whereV is the gradient operatat,is the convergence rate adjusting parameter astubitld be
lower than a certain value [3].

The gradient and hessian matrices can be stated as,

om oP
D(m+x£Px0)=Dm+D(xEPxO)={£+xBEXO}
9° a°P )
2 P =2 02(xTP - m T ’
(mxPx,) = D2me 02 (xIPx,) ijan +xoamxo}
where the termg—P can be found by taking derivation of ARE(11) al4ofws,
oP 0P
Al —+—A_+Q'=0
“9p op ¢ Q (14)
where
A, =A+Bk
Q/:AfiP+PAci +8_Q
” " Op, (15)
T
i :0_A+0_Bk _BR—la_Rk _BR—laB P
" op Op on op
It is evident that the second derivation can beéblly repeating the above process. It follows,
2 2
1 9P, 0P A +Qr=0 (16)
op;0p,  0p;9p,
where
2AT 2
Q": 0°A |3.|.A;ja_F).Fa_P,A\&j +A;r,ia_P+a_PAc,i +PAC’ji + 0Q
dp; op, op dp op; 0p, 0p; op,
T
el :0_A+6_Bk _BR-la_Rk _BR-laB P,
©o0p;  Op p an
2 T 2pT T
L= YA g1 Rpgi®B p g 0B p 0B a8 p an
op;0p op op opap op op
T 2
BRI R1B p ppaR Ry g R (0B adR
op,  9p, op  op opop dp 9p
T 2
_BR™ OR R OR K - oB R oR K- oB R_laB P+ 0°B K

ap; op ap op op ap dpop
Not surprisingly, Egs. (14) and (16) become the.LEs
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2.4. The proposed method: Extended Kleinman itmati

Since the ARE is a nonlinear matrix equatiorPinit is mostly preferred to use the Kleinman
iteration by iteratively solving of LE (9) which Isear inP and then improving the controller
by Eq. (10). The restriction to this method is tiecessity of the stability insurance in the

initialization step. In IPAD, in each iteration Bfj. (12), the passive parameters are altered and

thus the stability check should be done in each @&se in applied using barrier function in the
section 2.4.1). The Kleinman algorithm inherengythe Newton iteration [9]. Therefore by
mixing of the two Newton iteration one for the paegparameters optimization and next for the
controller, the IPAD can be applied. The major adage of this solution is getting involved
with linear system of equations comparing with (fti§ simpler equations comparing with (14)
and (16) which leads to have a smoother variatibesivation of LE(9) w.r.t the parametpr
leads to the following LEs:

0=(A-BK) S—P+§—P(A—Bk)+Q' as)
where Q' = A, P+PA_. +9Q 1 Ry and A, ~9A 9B, Note that Eqg. (18) is less
’ " op, ap, © Op, 0p

complicated than Eq (14). To find the hessian maanother derivation is taken from Eq. (18)
w.r.t the parametgy; and then,

°P 0P
0=(A-Bk)' + A-BK)+Q! 19
(A~BK) 3pan Tagap N B (19)
2 2
Ql’l’ :Ag’ja_P+a_PAC'j + ;£+0—PAN +A(-:r,jiP+PAc]ji + 0°Q KT 0°R
where % o R o8 0Rop  O0PIpP qy
_ 0°A _ 0B

This application of necessary condition needs teesoumber o, LEs for first andh,xn, LES
for second derivatives. Then the conjugate gradsgurithm leads to local optimal solutions.
See that the optimal passive dynamics design pe@at case mearks=0.

The extended Kleinman’s algorithm proposed for IPCD of unsaturated linear plants
1. Initialization (i=0): Suggest a stabilizing controller k, for initial plant (A,, By) and compute the

weighing matrices Ry and Q.

2. Compute the cost by solving LE (9).
T T _
3. AR +RA,; +Q +k'Rk =0.
4. Using parameter update law(12), improve the plant as,
- . -1
pI ! = pI _a[rnrs +X1(—)PrsXO:| |:m +X1(—)PrXO:| ’

in which P, can be found by solving the LE (18) and P can be found by solving the LE (19). o
should be found so that the solution of
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L ] T —
(A=Buk) P+R'(AL-B.K)*+Q..*k'R K =0 (20)
satisfies the inequality P = Ff' >0.
5. Update the matrix by optimal policy again,

K, =R.B,P (21)

i +11 +10 0

5.1f ||ki =K, ,4|| < £then end, else i-i+1 and goto 2

2.4.1. Stability barrier function

In every iteration of the above Newton iteratidme stability of the closed loop must be ensured.

The stability condition can be stated as,

maxRed (A -Bk)+J <0 (22)

whered is a small value to construct a boundary of exptiabdecay rate. This condition can be
introduced as a barrier penalty function to themjzation process as,

J, = exp{ a| maxRel (A -Bk) + 5]} (23)

wherea is a big number to have a rough penalty. It caoftenized by simple gradient descent
algorithm and it adds a following alteration to EtR) as,

aJ,
p=p -8 3 (24)
P;
004 roa- 04 0A" ) oa- _ oA,
where 9J., —a Pl 231 T A gl 16 find the term —L  where
op; op 2(0p 0p ap,
j:==argmax(R&') and it can be written as [5],
oA A X
=Y ke (25)
ap, Y X,

where x and y are right and left eigenvectorf\gfclosed loop gain matrix defined in Eq. (14)
andA.; is defined in (18). The term doesn’t let to gabithe unstable area (left half plane).

2.5. Proof of convergence

The following theorem is intended to prove the @ngence.

Theorem 1. Iteration on the plant and the controller is uniformly convergent if:
(i) The modified plant with controller k; is still stable.

(ii) The plant modification does not increase the cost.

Proof. We define a Lyapunov product as A* B =ATB+B"A . The condition (i) is equivalent to
the existence of a matrix P’ which satisfies the LE (20). Also, from condition (ii), we have

T Tp*
XoP Xy —=X,PX,20 so,
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-R'=20 (26)
Then assuming condition (i) and Eq. (26), it is possible to find a matrix as Q'>0 where,
(Ai+1 -B..K ) D(Fl) - F.)') =-Q'<0 (27)

Now consider the Lyapunov function V =X Pi'X. Derivation along the plant/controller

perturbed trajectory as considering of condition (i),

= X |: |+1 |+1) DPi,]X (28)
Using Eq. (A2.4), it can be rewritten as,
V=x' [(A -B,,.k )OP (BI alk =k +1)) DI?']X (29)
Using Eq. (20) it is possible to write,
V=x' |:_Qi+1 - kiTRi Kt (ki -k +1) D(BTAE)')}X (30)

Now by substituting the update law for the controller in Eq. (21) and expanding it, say,
V =x"[=Qus KRk +(k =k ) D(R L .1) |
=X [~Qu KRk +KRLK 2K R KLtk IR K [x (1)
=X ~Qua = (K ~k) Ria(k ~k.y) "KLR K Ly [x <0,

Therefore, if the modified system remains stable, then the controller modification is
monotonically decreasing. Now, we prove that condition (ii) is sufficient to have monotonic

plant convergence. To see this, suppose the following Lyapunov function V =XTPiX. In the
modified plant trajectory with controller k; it can be differentiated as,

V=x"[(A.,, =Bk )OR ]x,
=X"[ (A1 =Bk )OR (A, =B,k )OP'+(A ,, =B k ) OP']x, (32)
=X (A =B )O(R ~R)+ (AL~ Bk ) OR'[x
Using Eq. (27), it can be written as,
V =X [-Q'-Q;,, k[ Rk, |[x=0. (33)

This completes the proof.
3. Optimal active/passive suspension design

3.1. Mathematical modelling of the system

Considering the heave motion of the body onlyhisd have one DOF. An active suspension
control system model is shown in Fig. 1. The susjpensystem can be sketched as a 2 DOF
rectilinear mass-spring-damper system. The aimimsnmzation of body movement when the
abrupt input to the system is applied due to th#&oas irregularities along the road as This
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can be done by selecting appropriate controli@y, mainspring stiffnessk, and dashpot's

strengthc,.

State vector is selected &s[x;-w Xo-W X; Xp]. The control input (u) is applied by usual
pneumatic jack between the body of the automolitethe tires. The dynamic equation is:

0 0 1 0 | 0
0 0 0 1 0
A = _k1+k2 ﬁ _ﬁ & B = _i (34)
m, m, m m m
k, 2 C, _ 5% i
m, m, m, m | L My |

wherek, andc, are maiﬁspring stiffness and damping coefficidnthe suspension system and
they are passive unknowms; denotes the body mass,, (c;=0) andk; are wheel parameters.

The numerical values here is included in Table 1.

Table 1. Known passive parameters with

X2 n>
L no abilityto design
Parameter Values
Sprung mass(gh 288.9(kg)
unsprung mass(in 28.58(kg)

Tire stiffness(k) 1.559x18(N/m)

Fig. 1. Case study: Active suspension system

3.2. Simulations

In this section, the optimization of the above sungion system is applied for the initial
condition as an abrupt inputimasx,=[-0.1 -0.1 0 0]. Full accurate state feedback is considered
here and it means there is no problem with observaind measurement.

To constrain the parameters to positive valuesamsider their squares in the system's dynamics
ask, = p?,c, = p5. Then, by using exhaustive solving of the seri@RLproblems in the whole

of the parameter spacp:i{ p.), Fig. 2 is generated. In this figure, it is shothat the optimal
value of the parameters is located api,p;)=(230.48,72.66) corresponding to
(k1,¢1)=(53121,5279.5). Therefore, it is sufficient tashthat the algorithm proposed above will
converge to these parameters. To check the syamidkfR(Amnay ) is shown in the Fig. 3.
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Fig. 2: Cost map on the design parameters Fig. 3: Max-real of eigenvalue for closed loop

The convergence of the passive and active parasnatershown in Fig. 4 and Fig. 5. In Fig. 6,
the cost minimization is shown. In Fig. 7 paramet@nvergence is shown for contours of the
cost map and it can be seen that the algorithmapislly converged to the their optimal values. In
comparison to salama’s iteration, the proposed atethn in 2.3s where the salama iteration was

run in 12s. Thereupon, an improvement of 81% isiakd in the solution time. Note that the
results are identical.

500
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£ 300}
- : H . b
z _
& :
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~ - 2 : i i : - : i : =0 =/
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12 3 45 6 7 8 9 1011 12 13 14 15
H iteration
500
1 2 3 45 6 7 8 9 10 11 12 13 14 15
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Fig. 4: Gain convergence Fig. 5. Parameter convergence
x 10°
y 400
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Eae .
i 8 D—O—0—0O—0O— Tnitial
HEHE .‘Q‘Q—Q—O—O—O Plant
1 2 3 45 6 7 8 9 10 11 12 13 14 15 100
iteration
0
40 120 140 160
Fig. 6: Cost convergence Fig. 7: Convergence in the cost map

For the optimized system, the initial responsén@as in the following figures.
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=== |nitial === |nitial
= Optimized = Optimized
— XN
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t(s) t(s)
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= Optimized == Optimized
><m \L PN P ><<r
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Fig. 1. States of the system in normal/optimal cases
===|nitial
= Optimized |]
3H
0 0.5 1 15 2
t(s)
Fig. 22 Comparing of control signals
4. Conclusion

In this article, the well-known Kleinman's [8] algbm for solution of the ARE based on the
Newton algorithm is extended. Then, it is proposetind an appropriate passive parameters set
integrated with the controller. This IPAD problenohdng methodology is applied to a
suspension system. The method has a straightfora@rdme intentionally. Its efficiency is
shown by simulations. The future work includes éxéension of this method to optimal control
of bilinear systems that appeared in the semi-adivspension systems with variable damping
coefficient. The LEs can be solved for large salstems with accessible packages such as
MATLAB ® and this method can be applied on the integratédegmassive design of trusses and
flexible systems such as shape design problems.
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