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In this paper, a nonlinear 5-D hyperchaotic Rikitake dynamic system 

has been taken into consideration. The hyperchaotic behavior of the 

model was proved, and the response of the system has been shown. 

Besides, in the case of existing parametric uncertainties in the system, 

it shows even more complex behavior. An adaptive control strategy 

to have stable behavior is synchronized for an uncertain hyperchaotic 

system with an identical 5-D system. The stability of the control law 

has been identified by using the Lyapunov stability theory. The 

numerical simulations are presented for the hyperchaotic Rikitake 

system with unknown parameters and a system with time-varying 

parameters to indicate the effectiveness of the proposed algorithm for 

a class of complex systems. Moreover, since there are often lags 

between the signals gained by the system and the signals that the 

controller receives, the control input with the time delay parameter is 

implemented in the model. Also, the results show the gradual 

transformation from an unstable system into a stable one. 
© 2020 Iranian Society of Acoustics and Vibration, All rights reserved. 
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1. Introduction 

Chaos theory has been a matter of debate since its presentation by Pecora and Carrol in 1990 [1]. 

It describes the unstable periodic behavior in restorative nonlinear dynamical systems. Also, its 

technological applications have been foundin aerospace technology, the medical cyber-physical 

system, secure communication, chemical, biological systems, and many other scientific 

disciplines  [2-5]. The strange attractor, excellent sensitivity to initial conditions, highly complex 

dynamics, self-similarity, and inner randomness are the common features of chaotic systems [6, 

7]. The well-known 3-D weather prediction system that represented chaotic behavior was 
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proposed by Lorenz when he had been working on the atmospheric convection [8]; after that, a 

simpler 3-D chaotic system was constructed by Rössler [9]. So far, many other paradigms of 

those systems have been revealed like Chen system [10], Chen Lee- system [11], Cai system 

[12], Sundarapandian systems [13], Arneodo system [14], Sprott systems [15], Pham system 

[16], Vaidyanathan systems  [17, 18], etc. 

The synchronization of chaotic systems has attracted huge attention as a vital issue in treating 

dynamical systems with nonlinearity. According to the coupling configuration, the 

synchronization of chaotic systems is divided into master-slave synchronization, mutual 

synchronization, and control laws. These are used so that the output of the chaotic system, which 

is called the response or slave system, could track asymptotically with time another chaotic 

system which is called the output of the master or drive system. In other words, after the 

transient, both derive-response systems show similar behavior. 

As a result of the complex behavior of chaotic systems, designing an effective controller that 

establishes synchronization has always been challenging. A wide variety of techniques have been 

developed in order to achieve chaos synchronization, including the backstepping design method 

[19], adaptive control [20-22], sliding mode control method [23, 24], passive control method 

[25], active control strategy [26], linear matrix inequality approach [27], nonlinear control 

technique [28], and many other approaches. For instance, in [29], a fuzzy robust controller was 

proposed to synchronize different uncertain and unexpected chaotic systems. . In [30], impulsive 

control for chaotic systems was designed to obtain finite-time and fixed-time synchronization. In 

[31], the feedback control for time-delayed chaotic systems was proposed in order to ensure the 

exponential synchronization of the system. In [32], the two adaptive robust control is 

implemented in order to synchronize uncertain chaotic systems with hysteresis quantizer input. 

In [33], the adaptive robust method was designed in order to achieve the full-order 

synchronization and the reduced order synchronization between two nonlinear chaotic systems 

without canceling out the nonlinearity of the system. 

In this letter, we announce an adaptive synchronization and identification method to achieve 

synchronization for a fifteen-term 5-D hyperchaotic Rikitake dynamical system with an identical 

5-D system that has five unknown parameters to considerably transform chaotic behavior to 

periodic behavior. The system can be obtained by adding two state feedback controls to the 

famed three-dimensional Rikitake dynamical system. This hyperchaotic model has been analysed 

by several scientists before, but in fact, to the best of our knowledge, it is for the first time that 

this method has been utilized. At first, the phase portrait of the 5-D hyper-chaotic system is 

depicted. By the presented method, synchronization can be guaranteed even if a time-delay 

parameter exists in the input of the model. Furthermore, the unstable behavior can be 

transformed into a stable one; by this strategy, Lyapunov stability theory is proposed to depict an 

adaptive controller. 

The paper is formed as follows. First, the three-dimensional phase trajectory and the time series 

of the model are plotted and the equation of the 5-D hyperchaotic system is defined. Then a set 

of new formulations is proposed to identifying the unknown parameters and synchronizing them 

with the desired system. Finally, numerical simulations are applied to illustrate the effectiveness 

of the suggested approach. 
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2. Mathematical Model of a 5-D  hyperchaotic Rikitake system 

The unified five-dimensional hyperchaotic system derived by adding two-state feedback controls 

to the 3-D Rikitake model given by [34],  

 

{
 
 

 
 
 ̇                                    

 ̇          (     )           
 ̇                                                            
 ̇                                                                  

 ̇    (        )                                     

 (1) 

 

Where xi (i = 1, … , 5) are the state variables and   ,             are positive constant 

parameters. 

For studying uncontrolled system, the parameter values are taken as,   = 1,   = 1,   =0.7,   = 

1.1,    = 0.1. 

Fig. 1 shows the 3-D phase projection of the 5-D hyperchaotic Rikitake system (1) in (x1, x2, x3) 

space. Fig. 2 indicates the time evolutions of the hyperchaotic model. The initial states of the 

hyperchaotic system (1) are taken as x1(0) = 2.4, x2(0) = -1.2, x3(0) = 0.6, x4(0) = 1.9, x5(0) = -

2.3. The system has no equilibrium points, while represent hidden attractors. 

 

 

 

Fig. 1: The 3-D projection of the 5-D hyperchaotic system on (x1,x2,x3) space [34]. 
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Fig. 2: Time evolution of the 5-D hyperchaotic system [34]. 

3. Adaptive synchronization of the uncertain 5-D hyperchaotic Rikitake 

system 

Given two equal hyperchaotic systems, one is called a master system and the other is the slave 

system. Master-slave synchronization is used to couple two systems so that the behaviors of one 

system are controlled by the other one. In other words, the controlled (slave) system got a drive 

signal from the master system [35]. In this section, the general formulation for adaptive 

synchronization will be discussed. Then, the implementation of adaptive synchronization for the 

uncertain 5-D hyperchaotic Rikitake and an unknown time-varying system will be defined. 

Finally, a time-delayed control input for these systems will be presented. 

3.1.The problem formulation 

In this paper, the hyperchaotic driver system is assumed to be in the form of 

  ̇   ( )   ( )   
 

 

(1) 

 

Where     (     ) and     (       ) are functions,       is the state vector of the 

system, and      is the known parameter. The controlled (response) system is given by  
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  ̇   ( )   ( )   
(3) 

 

The structure of the equations for the slave system is similar to the master hyperchaotic system 

(2) structure, but      is a parameter vector with full uncertainty. 

In practice,   is unknown for the controlled system, but the output signal of the master system 

(2) could be transmitted to the slave system (3), So  we wish to design the best-controller U for 

the slave system, such that the slave system. 

  ̇   ( )   ( )   , (4) 

 

where synchronous with the master system (2) and the uncertain parameter in the response 

system (3) is identified concurrently. 

3.2.Synchronization of unknown 5-D hyperchaotic systems 

We define Eq. (1) as a master system and Eq. (5) as a slave system as follows: 

  ̇                                       

 ̇          (     )              
 ̇                                                                
 ̇                                                                      

 ̇    (        )                                          

 (5) 

 

where y1, y2, y3, y4, y5 are state variables, but   ,             are unknown parameters, and 

                are adaptive controls. 

We propose an adaptive controller for the hyperchaotic Rikitake dynamo system (1), where all 

the system parameters are unknown and need to be identified. 

The synchronization error between the hyperchaotic system (1) and response system (5) is 

defined as: 

          (     ) (6) 

 

Then, if the system parameter   is available, The following Lyapunov function is proposed to 

achieve an adaptive controller for the system. 

  ( )  
 

 
(  
    

    
    

    
 )  (7) 

 

Differentiating V function and replacing Eq. (6) and Selecting 
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    (    )                    

(8) 

    (    )   (     )               

         

              

              

 

We have 

   

  
    

    
    

    
    

     ( )  (2) 

 

It is seen that  ̇ is a negative semi-definite function. 

This adaptive controller and parameters identification update law are used to accomplish 

parameter estimation and synchronization when    (     ) are not known. In this paper, we 

will use   instead of   to show uncertainty. An updated law is proposed as follows: 

  ̇( )     ( )(      ( ))
 
  (10) 

 

In which 

  ̇             

(11) 

  ̇        

  ̇         

  ̇             

  ̇   (        )              

 

Where 

    (    )                    

(12) 

    (    )   (     )               

         

              

              

 

These adaptive controls are applied for synchronization and tracking. The equation of the error 

system according to the master system (2) and the slave system (3) is: 
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  ̇   ( )   ( )   ( )   ( )     
(13) 

 

Then, we choose a Lyapunov function for this system. 

   (   )   ( )  
 

 
(   ) (   )  (14) 

 

Where  ( ) is a presumption function. From Eq. (14) and the parameter identification update 

law (10) and replacing the solution of slave system (3), the time derivative of     function will be 

    
  

 (      ( )  ( )   ( )   ( )   ( )   )   ̇ (   )

 (      ( )  ( )   ( )   ( )   ( )   )

 (      ( )  ( )(   ))   ̇ (   )     ( )   ( )  

(15) 

 

Since   (   ) is a positive definite function and 
   

  
 is a negative semi-definite one, the stability 

of the points     and     are demonstrated. This concludes that identification update laws 

(10) and the error system (13) are asymptotically stable accordingly,  ( ) and  ( ) are bounded 

on the interval (    ). Let    ̅̅̅̅̅    ( )   ̅    ̅̅̅̅̅    ( )   ̅  If      then there exist two 

positive constants      such that ‖ ( )   ̅‖    implies  ( )   . By the explanation of 

superior limit, there exists a sequence {  }    
  such that ( (  )  (  ))  ( ̅  ̅)        . 

Presume    to be the integer such that ‖ ( )   ̅‖  
 

 
  for any     .Then, by the continuity 

of   (   ), for n large enough, we have  

  ( (  )  (  ))    ( ̅  ̅)  
  

  
   

where 
  

  
 is a fixed picked outnumber, such that on (      

 

  
 ) we have ‖ ( )   ̅‖    and 

also  ( )   . 

Consequently, 

  ( (  )  (  ))    ( ̅  ̅)  ∫  ( )
   

 

  
 

  
   

  

  
 . 

Then, we get inconsistency, which implies    ̅̅̅̅̅    ( )   . Likewise, we have        ( )    

. Therefore,        ( )   . 

Furthermore, we can easily understand from the error of the dynamical system (13) that  ̈( ) is 

bounded, so that is proof of the claim that        ̇( )   . Accordingly, the slave system (5) is 

synchronized with the master system (1) and satisfies the convergence of the system’s 

parameters       ‖ ( )   ‖   . 

3.3.Synchronization of unknown 5-d non-autonomous systems 

In this step, the derived adaptive controls are used for another master system which has time-

varying parameters. 

The new time-variant system is 
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where x1, x2, x3, x4, x5 are the state variables,   ,             are positive constant parameters 

and   is a positive constant parameter. The process like what is defined in the previous section. 

Eq. (16) is assumed as a master system and Eq. (17) as a slave system: 

 

 

{
 
 

 
 
 ̇                                                            
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   )  )              

 ̇                                                                                     

 ̇  (   
   )                                                                   

 ̇    (        )                                                              

 (17) 

 

where y1, y2, y3, y4, y5 are state variables, but   ,             are unknown parameters, and 

                are adaptive controls. 

Through Lyapunov function that is discussed in the pervious section and parameters 

identification update law, an adaptive control input can be proposed as follows: 

  ̇             

(18) 

  ̇        

  ̇         

  ̇             

  ̇   (        )              

    (    )                    

    (    )   ((   
   )     )               

 

         

(19)         (   
   )      

              

 

3.4.Time-delayed adaptive synchronization 

The structure of the control systems is based on the feedback of using from the state variables of 

the dynamic model. Moreover, the reality is that controllers have been unable to receive this 

feedback from the system at the same time. Hence, the control systems have a lack of receiving 

all the information from the model. The control input with delay for the unknown 5-d 

hyperchaotic system is presented as follows: 
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The parameters update law for the unknown 5-d hyperchaotic system is rewritten as 

  ̇             

(21) 

  ̇        

  ̇         

  ̇             

  ̇   (        )              

In fact, the synchronization error would be changed as 

      (   )     (     ) (22) 

 

where   is a time delay. 

Time-delayed control for the unknown 5-d non-autonomous system can be written as 

    (    )(  (   )    )     (  (   )    )     (  (   )    )  
  (  (   )    ), 

(23) 

    (    )(  (   )    )  ((   
   )     )(  (   )    )    (  (  

 )    )     (  (   )    ), 
     (  (   )    )  
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The parameters update law for the unknown 5-d non-autonomous system is defined as 

  ̇             

(24) 

  ̇        

  ̇         

  ̇             

  ̇   (        )             

 

where      (   )     (     ). 
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4 .Numerical simulations 

The numerical simulation contains three main parts: the simulation results for an unknown 

hyperchaotic system, uncertain non-autonomous model, and implementation of delayed control 

input on both systems. 

4.1.Results for stabilization of Uncertain hyperchaotic system 

In this section, the results of adaptive synchronization appliance on unknown hyperchaotic 

Rikitake system are discussed. In this simulation, the parameters for the hyperchaotic system (1) 

are taken from reference No. [36]. 

 

 
Fig. 3: Time-history for complete synchronization of the different state variables. 

The parameters for the uncontrolled system (1) are considered as: 

                                   

The initial conditions for the driver system (1) are assumed as: 

  ( )      ( )        ( )        ( )        ( )     

The initial states of the controlled system (5) are taken as: 

  ( )        ( )         ( )        ( )        ( )        

Respectively, the initial guesses for the uncertain parameters in the slave system (5) are taken as:  
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The numerical simulations are created to illustrate the effectiveness of the proposed method. 

Fig. 3 describes the adaptive synchronization of the specific output signal of the 5-D 

hyperchaotic systems (1) and (5). It is shown that there is a difference between the behavior of a 

derived system (1) and a controlled system (5) at first. However, the behavior will be completely 

the same after 15 seconds. 

4.2.Results for stabilization for time-varying system 

In this step, stabilization results of synchronization of the non-autonomous Rikitake system are 

shown. Fig. 4 denotes that this controller stabilizes the new system. As it is seen in Fig. 4, the 

time for identification of the system and convergence of the state’s increase. 

 
Fig. 4: Time-history for complete synchronization of the state variables of the non-autonomous system. 

4.3.Results for stabilization of Rikitake and autonomous system with delayed control 

input 

In this section, the results of stabilization when time-delayed control implement on both 

proposed systems are depicted. Fig. 5 indicates the synchronization of the output signals of the 5-

D hyperchaotic systems (1) and (5) when the control input with delay is implemented to the 

system. It can be concluded that there is a little disturbance in synchronization and the behavior 

of the master and slave systems are not completely the same. However, the behavior of the 

unstable system is changed and somehow, it can be stated that the behavior of the system is now 

stable. 
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Fig. 5: Time-history for complete synchronization of the different state variables with time-delayed control input. 

 

 

Fig. 6: Time-history for complete synchronization of the different state variables with time delayed control input and 

higher control again. 

In order to completely transform the behavior of the system into stable behavior, the gain control 

of the system is slightly increased. Fig. 6 shows the synchronization of the output signals of the 
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master and slave systems with the time-delayed control input when the control gains are higher 

than before. It demonstrates that the unstable behavior is completely changed to stable behavior 

in a short time. 

 

 
Fig.7: Time-history for complete synchronization of the state variables of non-autonomous system with time-

delayed control input. 

Fig.7 demonstrates the synchronization of the non-autonomous system with a delayed control 

input. The behavior of the system is changed, but the disturbance is too big in some states. 

Therefore, the controller is unable to stabilize the system. 

By increasing the control gain, stabilization can be achieved. Fig. 8 indicates that the controller is 

able to transform the unstable behavior into a stable one. However, it can be seen from fig, there 

is a little disturbance in synchronization. 
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Fig. 8: Time-history for complete synchronization of the state variables of non-autonomous system with time-

delayed control input and higher control gain. 

Table 1. The results of adaptive synchronization for various chaotic systems. 

Type of system Applying adaptive law 

Autonomous system Complete synchronization after 15 s 

Non-autonomous system Complete synchronization after 17 s 

Autonomous system with time-delayed control input The synchronization is not completely achieved. 

However, the behavior of the master and slave system 

will be almost similar after 20 s. 

Autonomous system with time-delayed control input and 

higher control again 

Complete synchronization after 18 s 

Non-autonomous system with time-delayed control 

input 

Synchronization is not achieved. The system is unstable. 

Non-autonomous system with time-delayed control 

input and higher control gain 

The synchronization is not completely achieved and 

there is a little disturbance in. However, the behavior of 

the system is changed. 

 

Table 1 is presented to outline the results of the synchronization of different systems and 

compare them in a better way. 

It can be concluded that as the chaotic system becomes more complex and the controller 

becomes closer to reality, the adaptive control finds it difficult to synchronize the behavior of the 

master and slave systems. The robust or fuzzy controller could be able to solve this problem and 

decrease the time that it takes to achieve complete synchronization in a wide number of systems. 
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5. Conclusion 

In this paper, the issue of the adaptive synchronization of uncertain 5-D hyper-chaotic Rikitake 

system with unknown system parameters was investigated in detail. Although the uncertain 5-D 

hyperchaotic Rikitake system has been examined by several scientists before, to the best 

knowledge of the authors, controlling such a system by using an adaptive synchronization has 

not been taken into consideration yet. Synchronization of 5-D hyper-chaotic Rikitake system 

could be achieved by this effective method and it could be adopted for a class of non-

autonomous chaotic systems. In addition, the existence of a delay in adaptive synchronization 

input for both Rikitake and time-varying system was investigated and proved that the behavior of 

the systems could be changed from unstable to stable one by this strategy. In this article, 

numerical simulations were offered to explain the feasibility and performance of an identification 

method. Theresults concluded that the time evolutions for the variables of both systems with or 

without delay in control input would be the same in a few minutes. It should be noted that the 

behavior of the master system and slave system has been similar and there is no indication of the 

chaotic behavior in the system. In other words, the system profoundly transforms from chaotic 

into a periodic one after a short time and the stability of the system is guaranteed. The presented 

identification method can be employed practically for some complex nonlinear systems and help 

to deal with serious problems in this field. 
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