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In this study, energy harvesting from two-dimensional vortex-induced 

vibrations of a circular cylinder is investigated. To do so, the vibratory 

behavior of the flexibly mounted circular cylinders is described using the 

nonlinear wake-oscillator model. Then, the effect of changing the flow 

velocity on the dynamic behavior of the cylinder is numerically obtained and 

validated by experimental results.  The effect of changing the main 

parameters of the system on its electrical and vibratory behavior is 

investigated by employing the nonlinear electromechanical equations of 

motion. Unlike most previous studies that only tend to maximize the 

harvested energy, structural failure due to large deformation is considered in 

this study. For this reason, the so-called Perfection Rate (PR) parameter is 

introduced. By using this parameter, the application of the energy harvester 

is characterized, in which the energy harvesting system works efficiently, 

regarding its vibration amplitude, which should be small enough. 

Furthermore, the proper load resistance range for the VIV-based energy 

harvesting system in the post-synchronization regime is obtained and it is 

demonstrated that the energy harvesting system with a small 

electromechanical coupling coefficient can effectively work in this regime. 
© 2020 Iranian Society of Acoustics and Vibration, All rights reserved. 
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1.Introduction 

Nowadays, many studies have been done on the case of generating electrical energy from 

ambient vibration-based energy sources [1-3]. In this area of research, electromagnetic [4], 

electrostatic [5], and piezoelectric [6-8] devices are widely utilized as energy harvesters. Among 

these systems, piezoelectric devices can be used in a vast range of frequencies. Therefore, they 
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can be good options for vibration-based energy harvesting systems [9]. One of the accessible 

vibration sources for energy harvesting is vortex-induced vibrations (VIV), which is studied by 

many researchers over the past years [10]. Generally, the VIV is described using one degree of 

freedom mass-spring system, in which a bluff body is oscillating in the transverse direction of 

fluid flow [11-15]. Facchinetti et al. compared three coupling models with experimental results 

and concluded that the acceleration coupling could predict the experimental results better than 

other couplings [14]. Using two coupled van der Pol equations, Farshidianfar and Zanganeh 

presented a model with good agreement with the empirical results in both low and high mass-

damping ratios [15]. In several studies, models with two degrees of freedom have been presented 

to accurately predict the VIV in transverse and in-line directions [16-18]. 

In recent years, flow-induced vibration-based energy harvesting are studied by many researchers. 

Oscillations of an airfoil [19], a circular cylinder [20], and non-circular cross-section geometries 

such as square section bluff bodies [21], flexible membrane in fluid flow [22], PVDF 

piezoelectric polymer in water flow [23], cantilevered piezoelectric energy harvesters [24], 

flexible ceramic cylinders [25] are some of the studies concerning this field.  

The vortex-induced vibrations have large amplitudes over the wide range of lock-in phenomena. 

This wide frequency range is proper for extracting energy. On the other hand, piezoelectric 

harvesters are proper for harvesting energy from fluid flow oscillations because they have a 

simple structure and can easily be excited to the VIV. Also, comparing to other energy 

harvesting methods, piezoelectric materials have a larger power density [26].  

In the present study, a two-dimensional system is equipped with a piezoelectric device. Coupled 

electromechanical equations are obtained to describe the vibratory and electrical behavior of the 

system. Then, the effect of changing the main parameters of the system on the harvested energy 

and vibration amplitude is investigated. Unlike other papers in this area of research, which only 

tend to maximize the output electrical power, both the vibratory response and output energy are 

investigated in this study. For this reason, a parameter, which is simply named Perfection Rate 

(PR), is defined. Finally, the effect of changing the load resistance and coupling coefficient on 

the PR parameter and system efficiency under the circumstances is investigated. 

 

2.Mathematical Modeling 

2-1. Coupled structure, piezoelectric, and wake oscillator model  

A 2DOF model of the coupled structure and wake oscillator equipped with a piezoelectric device 

is schematically shown in part (A) of Figure (1). As indicated in this study, the piezoelectric 

device refers to the beam with a piezoelectric layer. In this figure, a cylinder of mass Mc and 

diameter D is subjected to the flow with uniform velocity U. Furthermore, X(T) and w(Xc,T) 

respectively show the in-line and cross-flow displacements. Also, Xc and Yc represent in-line and 

cross-flow coordinates, respectively, and T denotes time. Moreover, L is the length of the 

piezoelectric device and tp, tb, Kx and Cx represent the piezoelectric thickness, beam thickness, 

stiffness, and damping of the device in in-line direction, respectively.  
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(B) 

 

Fig1. 3D model of the energy harvester (A); cross section of the energy harvester (B) 

  

To model the system, initially, the energy terms are derived and then they will be substituted in 

Lagrange equations to obtain the electromechanical equations of the system. The potential 

energy for the system, shown in Figure (1), is illustrated in the following form: 

 2 2
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   

(1) 

where w(Xc,T) and V(T) are the transverse displacement of beam and electrical voltage, 

respectively. Also, d31, Ep and Eb are piezoelectric strain constant and the Young’s modulus of 

piezoelectric and beam, respectively. Note that the integrations are performed over the volume of 

the piezoelectric layer and beam and the subscripts p and b refer to piezoelectric patch and beam, 

respectively. Consequently, the volume of the piezoelectric and beam are presented as vp and vb. 

More details for deriving equation (1) are presented in Appendix A. The kinetic energy of the 

system is written as follows: 
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21 1
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2 2b p
b b p p c t

v v
X L

w w w
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 
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       
   (2) 

where ρb and ρp are the density of beam and piezoelectric, respectively; Mt is the total mass of the 

structure, and Mc is mass of the cylinder. More details for deriving equation (2) are written in 

Appendix B.  The internal electrical energy can be calculated as follows [26]: 
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In the above equation, ē31 and e33 are effective piezoelectric stress constant and permittivity 

component at constant strain. The non-conservative virtual work of the system is given by: 

 
0

4
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mech elec
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
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  (4) 

in which ca and Q are viscous damping coefficient and electric charge output. Note that, in the 

above equations, Fx and Fy respectively indicate fluid forces in the in-line and cross-flow 

directions. The transverse displacement of the beam can be given in the following form: 

 

1

( , ) ( ) . ( )c c

n
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

  (5) 

where φi(Xc) and Yi(T) indicate the i
th

 mode shape and time response of the beam. Due to the fact 

that the first mode is the main mode, only the first vibration mode is considered in this study. 

Consequently, φ(Xc) and Y(T) are defined as mode shape and time response of the first vibration 

mode. The Lagrange equations are expressed as 
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 (8) 

Substituting equations (1) to (4) into the Lagrange equations and using the orthogonality 

conditions lead to finding the final equations of motion, which can be written as follows: 

 t x x xM X C X K X F    (9) 

 
eq eq eq ym Y c Y k Y V F     (10) 

 2 0pC V V R Y    (11) 

In which Cp is the capacitance of piezoelectric layer, and other coefficients of the above equation 

are expressed as follows: 
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where CD and CL are the time-varying drag and lift coefficients, respectively. Furthermore, the 

boundary conditions are: 

 
(0) 0 , (0) 0 , ( ) ( ) ( ) (t) , ( ) 0
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EI L q t L q L           (21) 

Moreover, the eigenfunction for the fixed-guided beam is given by the following equations, 

where λ is the eigenvalue of the first vibration mode. These equations are derived with the aid of 

reference [26].  
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Also, the orthogonality condition, which is shown as follows, can be used to find C. 

 2 2

0
( ) ( ) 1

4

L
c

c cX X
M

A d L     (24) 

In the above equation, ρtAL is the total mass of one beam and its attached piezoelectric. Based on 

the research done in the area of two-dimensional VIV, to improve the accuracy of modelling, 

several nonlinear terms should be added to the governing equations [18]. Therefore, the 

equations (9) and (10) can be re-written as follows: 

 * 3 * 2( ) ( ) ( )t fx x fx x x x xM m X C C X K X X XY F         (25) 

 * 3 * 2( ) ( ) ( )eq fy eq fy eq y y ym m Y c C Y k Y Y YX V F           (26) 

The total effective mass of the cylinder is the sum of cylinder mass (Mt ≈meq=ms) and fluid-

added mass (mfx=mfy=mf=ρCMπD
2
/4), where ρ is the fluid density and CM is the fluid-added mass 

coefficient. Note that CM is assumed to be unity for the case of a circular cross section [12]. 

Furthermore, the total effective damping of the cylinder is equal to the sum of the hydrodynamic 

damping and structural damping (Cf+Cs), where the hydrodynamic damping is equal to 

(Cfx=Cfy=Cf=γ(2πStU/D)ρD
2
) and the structural damping coefficients are considered to be equal 

in both X and Y directions (Cx=ceq=Cs). Parameters γ and St in the presented relations are 
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respectively the stall parameter γ=0.8 [14] and the Strouhal number St=0.2 [12]. Moreover, αx
*
, 

αy
*
, βy

*
 and βy

*
 are the geometric coefficients that show the nonlinear behavior of the mass-spring 

structure and they are considered to be equal to 0.7 [27]. To describe the impact of vortices on 

the oscillating cylinder, two van der Pol equations have been presented in the following 

equations:  

 2 22 ( 1) 4x f f xp p p p S       (27) 

 2 2( 1)y f f yq q q q S       (28) 

where p and q are reduced vortex drag and lift coefficients (p=2CD/CD0, q=2CL/CL0) [27]. 

Furthermore, CD0 and CL0 are drag and lift coefficients of a stationary cylinder and are 

respectively taken as 0.2 [28] and 0.3 [12]. Herein, the effect of two-dimensional cylinder 

fluctuations on the surrounding vortices are simulated as the excitation terms (Sx=ΛxẌ/D and 

Sy=ΛyŸ/D). In this study, the so-called wake–cylinder coupling coefficients (Λx, Λy), based on the 

previous experimental studies, are considered as Λx=Λy=12 [14]. Moreover, εx and εy are 

experimental wake coefficients and they are respectively equal to 0.3 and 0.00234e
0.228m*

,
 
in 

which mass ratio m* is equal to 1.4 [14, 18]. In addition, the vortex-shedding angular frequency 

is obtained using the relation ωf=2πStU/D [12]. Consider that the initial conditions are p=q=2 

and velocities are zero. Therefore, in the case of Sx=Sy=0 and εx>0, εy≤1, van der Pol equations 

settle a stable quasi-harmonic oscillation around p0=q0=2  at the angular frequency ωf [29]. Note 

that equations (25) to (28) and (11) are coupled equations, which describe the electromechanical 

behavior of the system. 

 

2-2. Normalized equations 

Defining dimensionless variables for in-line displacement x=X/D, cross-flow displacement  
y=Y/D, generated voltage v=V/v0, and time t=ωnyT leads to find the normalized form of the 

electromechanical equations. The coupled electromechanical equations are written as follows: 

 2 3 2 2 2* ( ) 2 ( )x x x D L rx x f x x xy M p M qy U            (29) 

 3 2 2 2 2( 4 ) 2 ( )y y y L D ry y y y yx v M q M py U              (30) 

 2 22 ( 1) 4x xp p p p x        (31) 

 2 2( 1)y yq q q q y       (32) 

    
11 2 2 24 ( ) 0P ny P eq fy nyv RC v C m m y   


     (33) 

where αy=αy
*
D

2
 and  βy=βy

*
D

2
 are the geometrically nonlinear coefficients [18], and combined 

fluid-structural damping terms λx and λy, are given by:  

 *2 ( ) , 2 ( )x x x y y yf              (34) 

where  f*=fnx/fny  and Ω=ωf/ωny=StUr are frequency ratios [14, 18] and  μx and μy are mass 

ratios: 
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 
   (35) 

Also, ξx and ξy are structural damping coefficients, which are written as follows: 

 
,

2( ) 2( )

eqx
x y

t fx nx eq fy ny

cC

M m m m
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 
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Furthermore, structural natural frequencies in still water are given by [18]: 

 ( ) , ( )nx x t fx ny eq eq fyK M m k m m      (37) 

 

The reduced form of flow velocity is given by Ur=2πU/(ωnyD) [13]. For normalizing the 

displacement equations, two parameters for stream-wise and transverse mass parameters are as 

follows [18]: 

 0 0

2 2 2 2

1 1
,

2 28 8

D L
D L

x y

C C
M M

St St   
   (38) 

Furthermore, the dimensionless form of the generated voltage v=V/v0 is given by: 

  3 2
0 c y nyv D L f    (39) 

where Lc is the circular cylinder length. 

 

3.Results and Discussion 

3-1. Case study 

The material and geometric properties of the coupled structure and wake oscillator system are 

listed in Table (1). Notice that these properties are as same as the previous experimental studies. 

Note that this experiment is done in the uniform steady flow with Reynolds numbers between 

2×10
3
 and 5×10

4
. Therefore, the fluid flow is in sub-critical range of Reynolds number [18].  

Table1. Properties of the coupled structure of cylinder and wake 

Physical parameters Values Physical parameters
 

Values 

D (m) 0.114 ξx 0.047 

fnx (Hz) 0.316 ξy 0.01 

fny (Hz) 0.312 µy 0.6π 

ρ (kg/m3) 1000 Lc (m) 1.037 

 

To validate the results, amplitudes of the cross-flow and in-line vibrations of the cylindrical bluff 

body (without the energy harvesting device) are compared with the previous experimental 

results. Figure (2) shows the comparison of theoretical modeling with the experimental results 

for cross-flow and in-line oscillations [17, 18]. According to this figure, the following results are 

mentioned.  
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1. 1.In the synchronization regime (4<Ur<12), the cylinder oscillations in the cross-flow 

direction is more than the in-line oscillations. 

2. 2.Although numerical responses and experimental responses in the in-line direction have 

more discrepancies, these results in the cross-flow direction can confirm the lock-in 

region and maximum amplitude adequately.  

Consequently, the cross-flow simulation is more reliable and proper for energy harvesting. 

Therefore, in the present study, the piezoelectric device is attached to the beam, which is used to 

act in the cross-flow direction. 

It is worth mentioning that, in this study, only the first vibration mode is considered because: 

1. It is more typical to use piezoelectric energy harvesting systems only for the first 

vibration mode. 

2. By considering more vibration modes, the number of fluid-structure interaction relations 

will be more than 4 coupled equations and it is much harder to match the numerical 

simulation with experimental responses. 

Therefore, it is possible to improve the experimental and numerical responses by considering 

more mode shapes but, this suggestion needs more complicated investigations. 

  
(A) (B) 

Fig.2. Comparisons of in-line (A) and cross-flow amplitudes (B) with the experimental data [17, 18] 

3-2. Effect of changing the main parameters on the generated power 

Properties of the piezoelectric layer attached to the VIV-powered energy harvesting system are 

shown in Table (2). 

Table2. Properties of the piezoelectric device [30] 

Physical parameters Values Physical parameters
 

Values 

CP (nF) 120 θ (mN/V) 1.55 

 

Response of the system undergoing VIV, which is equipped with the piezoelectric device, is 

shown in Figure (3). For better presentation, the time response of the vibratory system in several 

reduced velocities (Ur=4, 10, and 16) are shown in this figure. As expected, the highest vibration 
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amplitudes are shown in the lock-in range. In the next subsections, the influence of varying 

different parameters on the dynamic behavior of the presented system is investigated. 

  
(A) (B) 

Fig.3. Amplitude responses of the in-line (A); and cross-flow vibrations (B) of the cylinder with the piezoelectric 

device  (R=100KΩ) 

3-2-1. effect of changing load resistance on the generated power 

As shown in Figure (4), increasing the load resistance leads to a decrease in the amplitudes of in-

line and cross-flow vibrations. The reason for this behavior lies in the fact that raising the load 

resistance leads to an increase in the harvested electrical energy, and consequently, it leads to 

reducing the mechanical energy.  

  
(A) (B) 

Fig.4. Variations of the in-line (A) and  cross-flow amplitudes (B) for different load resistances 

3-2-2. effect of changing electromechanical coupling coefficient on the generated power 

The significant effect of changing the load resistance on the RMS of the harvested power is 

shown in part (A) of Figure (5). As shown in this figure, the maximum power can be harvested 

under the synchronization regime. Note that the RMS value gives a measure of the average 

energy in the signal. The RMS of the harvested power is calculated as follows:   

 
 

1 2
2

2
( )

1

1
i

N

RMS t

i

P v R
N



  
  
  
  (40) 
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where N is the signal length and ti
 
is the i

th
 element of the time vector.  Effect changing the load 

resistance on RMS of the harvested power, in several values of the reduced velocity, is shown in 

part (B) of Figure (5). The power in this figure is depicted versus the load resistance, which is 

increased up to 190kΩ.  

  
(A) (B) 

Fig.5. Variations of harvested power versus the reduced velocity (A) and the load resistance (B) 

Note that the electromechanical coupling coefficient can be written as [31]: 

   2 2
n,oc n,s e

1 2

c ff p M C     (41) 

where ωn,oc and ωn,sc are respectively the open circuit and short circuit natural frequencies of the 

energy harvesting system, which can experimentally be obtained and CP is the total capacitance 

of the piezoelectric device, which is related to the dimension and dielectric constant of the 

piezoelectric device. Therefore, the electromechanical coupling coefficient can be variable due to 

system properties. To change this parameter in real physical system, different methods are 

suggested. For instance, one way to increase the electromechanical coupling coefficient is to 

increase its capacitance. Another effective method is modifying the effective length of the 

piezoelectric layer by varying the distance between two points of electrodes. Furthermore, 

changing other parameters like the thickness of the piezoelectric layer and electric field 

component is effective on this parameter [32-34]. 

Herein this question may be posed:“what is the effect of varying electromechanical coupling 

coefficient on vibratory and energy behavior of the presented system?” The effect of changing 

the electromechanical coupling coefficient on the in-line and cross-flow amplitudes of the 

discussed system in different reduced velocities is shown in Figure (6). As shown in this figure, 

increasing electromechanical coupling coefficient leads to a decrease in the amplitude of in-line 

and cross-flow vibrations.  
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(B) (A) 

Fig.6. Variations of the in-line (A) cross-flow (B) amplitudes versus the reduced velocity with variable 

electromechanical coupling coefficient (R=100KΩ)  

3-2-3. effect of changing electromechanical coupling coefficient and load resistance on the 

generated power 

The effect of changing both load resistance and electromechanical coupling coefficient is shown 

in Figure (7). Regarding this figure, it can be concluded that increasing both the 

electromechanical coupling coefficient and load resistance leads to increasing the harvested 

power, and as expected, the system generates more power in the synchronization range. 

   
(A) (B) (C) 

Fig.7. Variations of the RMS power versus the load resistance and the electromechanical coupling coefficient in the 

pre-synchronization regime for Ur=4 (A), synchronization regime for Ur=10 (B), and post-synchronization regime 

for Ur=16 (C)  

Inspecting the figures, the following conclusions are found out: 

1. Regarding part (B) of Figure (4), in high reduced velocity (Ur=16), the vibration 

amplitude is more than three times smaller than the highest vibration amplitude in the 

synchronization regime (Ur=10). Furthermore, according to Figure (7), the RMS value of 

the harvested power in the synchronization regime can be 2.4 times larger than the 

harvested power in the post-synchronization regime. In other words, RMS value of 

generated power does not linearly increase with the growth of vibration amplitudes.  

2. According to the fact that the system oscillations are higher in the lock-in range, the 

vortex-induced vibration-based energy harvesters should be used near their fundamental 

frequency. Moreover, it is worth mentioning that the large deflection of the beam and 

piezoelectric transducer may lead to structural failure. 
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Regarding these aspects, the system should be designed to generate maximum power with less 

damage. Therefore, maximizing the harvested energy (electrical-based modelling) and 

minimizing the mechanical deflection (mechanical-based modelling) should simultaneously be 

considered. The so-called Perfection Rate (PR), which summarizes both electrical-based and 

mechanical-based modellings in a parameter, is defined as follows: 

      max maxPR (%) 100 1 1RMS yWF P P WF A A      (42) 

in which WF is the weighting factor for the energy-based modelling. Inspecting this equation, 

raising WF leads to an increase in electrical energy importance and a decrease in mechanical 

energy importance in the system. It is also noted that by reduction of mechanical energy 

importance, the effect of changing vibration amplitudes on the system and subsequently the 

probability of system failure decreases. Variation of the PR parameter with the load resistance 

and electromechanical coupling coefficient is depicted in Figure (8). As shown in this figure, 

when the importance of the electrical energy is less (WF=0.3), for all the values of load 

resistance and electromechanical coupling coefficient, the energy harvester’s efficiency is more 

in the post-synchronization range (Ur=16).  

 

   
(WF=0.3, θ=1.55mN/V) (WF=0.5, θ=1.55mN/V) (WF=0.7, θ=1.55mN/V) 

   
(WF=0.3, R=100KΩ) (WF=0.5, R=100KΩ) (WF=0.7, R=100KΩ) 

Fig.8. Variations of the perfection rate in pre-synchronization, synchronization, and post-synchronization regimes 

versus load resistance (θ=1.55mN/V) 

Moreover, when the importance of the electrical-based and mechanical-based modelling is the 

same (WF=0.5), for a wide range of load resistance and electromechanical coupling coefficient 

values, the VIV-based energy harvester works better in post-synchronization regime (Ur=16). 

Also, for load resistance values of more than 170 K and electromechanical coupling coefficient 

values of more than 2.8 mN/V, the energy harvester is advantageous in the lock-in range 
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(Ur=10). The energy harvester’s behavior is similar when the importance of the electrical-based 

modelling is more (WF=0.7), and the system is efficient for the load resistance up to 70 K and 

electromechanical coupling coefficient up to 1.8 mN/V in the synchronization range (Ur=10). 

Therefore, the following results are derived: 

1. By increasing electrical energy importance (increasing WF), the system performance 

improves in the lock-in range for high values of load resistance and electromechanical 

coupling coefficient. 

2. By increasing mechanical energy importance (decreasing WF), the system efficiency 

enhances in the post-synchronization range and for low values of load resistance and 

electromechanical coupling coefficient. 

Therefore, it is possible to design a system based on values of load resistance, electromechanical 

coupling coefficient, WF, and Ur. Also, in the lock-in range (Ur=10) the PR is maximum for high 

values of load resistance and electromechanical coupling coefficient (PR=70%).  

It is worth adding that the piezoelectric materials have a higher power density compared to other 

energy harvesting methods. In this study, the maximum of the harvested electrical power, from 

four piezoelectric devices with dimensions 30×5×0.15 mm, is equal to 0.6 W. Therefore, the 

power density, which is calculated by dividing the output power by the volume of energy 

harvester [26], is equal to 6.67 W/cm
3
.  

4.Conclusion 

In this paper, the vortex-induced vibration of a circular cylinder, which is connected to a 

piezoelectric energy harvester, has been studied. First, governing equations of motion has been 

derived and the influence of variable parameters of the dynamic behavior of the system has been 

investigated so as to enhance the system’s efficiency. As a result, it was denoted that increasing 

each of the load resistance or electromechanical coupling coefficient can lead to decreasing 

vibration amplitudes. Also, results illustrate that the highest power can be harvested in the lock-

in range. Furthermore, regarding high mechanical stress in the lock-in range, energy harvesting 

in the post-synchronization range (Ur>12) is safer. Also, regarding the PR parameter, when 

WF=0.5, it is concluded that the systems with load resistances of less than 170KΩ should work 

in the post-synchronization regime. Moreover, it was demonstrated that in the case of systems 

with small electromechanical coupling coefficients, like small piezoelectric devices, energy 

harvesting in the post-synchronization regime is preferred. 

Appendix A 

To calculate the potential energy of the piezoelectric patch and beam, the first step is to define 

the strain of σ and stress of  ɛ as [26] 

 2

31 3 32
, , ,c b b p p p

pc

w V
Y E E E d E E

tX
    


     


 (A1) 

 

where E3 is the electric field component in the cross-flow direction of Yc. Also, the potential 

energy of each piezoelectric and beam can be calculated as 
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2 2b p

b b p p
v v

dv dv        (A2) 

 

In the second step, by substituting stress and strain relations of (A1) into the potential energy 

relation of (A2), the ultimate form of the potential energy of each piezoelectric patch and beam is 

given by 

 

2 2

2 2
2 2 2

1 3 21

1 1

2 2b p
b bc c cp p

c
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pc c

Y Y Y
X X

w w V w
E dv E d

X
dv

t


         
           

         
   (A3) 

Moreover, the potential energy of the spring in in-line direction is 

 2

2

1

2
xK X   (A4) 

Finally, the total potential energy of the structure is obtained by adding the potential energy of 

(A4) to the potential energy of 4 piezoelectric patches and beams in (A3). 
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2 2 2
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         
   

(A5) 

Appendix B 

To derive the kinetic energy of the structure, first, the kinetic energy of each piezoelectric patch 

and beam in cross-flow direction is calculated as 

 2 2

1

1 1

2 2b p
b b p p

v v

w w
K dv dv

T T
 

    
    

    
   (B1) 

Moreover, the kinetic energy of the cylinder in cross-flow direction is given by 

 2

2

1

2
c

X L

w
K M

T 

 
  

 
 (B2) 

Similarly, the total kinetic energy of the structure in in-line direction is   

 
 2

3

1
, 4

2
t t b b b p p p cK M X M w t w t L M      (B3) 

where Mt is the total mass of the structure. Finally, by adding the kinetic energy of 4 

piezoelectric patches and beams in equation (B1) to (B2) and (B3), the total kinetic energy of the 

structure in both in-line and cross-flow directions is obtained as 

 22 2
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