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In this paper, the effects of higher-order terms in aerodynamic force 

model have been investigated on the response of galloping 

piezoelectric energy harvesters. The system comprised a PZT beam 

with a bluff body and was exposed to a fluid force. First, the 

dimensionless governing electromechanical equations were provided. 

To model the aerodynamic force, the 3rd and 7th order galloping 

models have been employed by adopting the quasi-steady 

assumption. Then, the dynamic response based on the 3rd and 7th 

order aerodynamic force models has been studied using a numerical 

integration method. Besides, an approximateanalytical solution based 

on the multiple scales method (MSM) has been provided. Next, the 

mechanical and electrical responses of the system are obtained using 

the MSM solutions. Finally, the optimum electrical power and the 

corresponding dimensionless load resistance have been obtained. The 

results reveal that considering higher-order terms in aerodynamic 

force expansion is necessary for accurate characterization of the 

mechanical and electrical responses. 
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1. Introduction 

The batteries that are used as a common source of power in low-power instruments, such as 

wireless sensors for health monitoring in remote areas, medical implants, etc., have major 

drawbacks such as finite life span, costly periodical replacement, and chemical pollution. 

Harvesting untapped energy from the environment can be used as an alternative approach to 
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replace the batteries with sustainable, cheap, and green energy sources to achieve a local power 

supply and an autonomous operation. The well-known sources are kinetic energy, heat, and light 

energy. Among all these sources, kinetic energy is available everywhere and vast researches 

have been done on this area. Kinetic energy can be transmitted to electrical form using 

piezoelectric[1], electromagnetic [2], and electrostatic [3] mechanisms. All of these transduction 

mechanisms have limitations, but piezoelectric materials draw attention because they generate 

higher energy density and can be implemented in different sizes for different applications. 

Typical kinetic energy harvesting approaches are vibration and flow energy harvesting. In flow 

energy harvesters, the structure is placed in the flow field to catch the flow energy from flow-

induced instabilities. Vibrations can occur as a result of aerodynamic instability such as vortex-

induced, flutter, and galloping [4, 5] based energy harvesting. Galloping piezoelectric energy 

harvesters (GPEH) are composed of a PZT beam with an attached bluff body. As the fluid passes 

the bluff-body, the surface pressure as a result of inner circulation is produced. The pressure 

exerts a lift force on the bluff body. When the flow velocity increases upon a critical value, cut-

in wind speed, the aerodynamic damping term dominates the intrinsic one, the structure starts to 

vibrate, and the amplitude of oscillation increases until the nonlinear terms limit them. This 

results in steady-state fixed amplitude oscillations. Consequently, electrical voltage and power 

are generated. Sirohi et al. [4] studied a GPEH with a triangular cross-section bluff body both 

numerically and experimentally. They showed that the air mass could affect the response of the 

system in reality. Sirohi et al.[5] investigated a  GPEH with D shape cross-section bluff body, 

based on numerical and experimental analyses, using lumped parameter modelling and showed 

that the mass and the geometric properties influence the output voltage. Their experimental 

results approved the validity of using quasi-steady assumption in aerodynamic modelling. 

Abdelkefi et al.[6] investigated high and low Reynolds number effects on the harvested power 

and the cut-in-wind speed of a harvester with a square-sectioned cylinder. They reported that, 

unlike the high Reynolds number condition, the aerodynamic coefficients are a function of the 

Reynolds number in the low Reynolds number condition. Zhao et al.[7] studied the distributed 

and lumped parameter modelling of the GPEH numerically and experimentally. They showed 

that the lumped parameter modelling is sufficient to study the behaviour of GPEH. Abdelkefi et 

al.[8] investigated a GPEH with a square-sectioned bluff body. They reported that the maximum 

harvested power is accomplished via varying the load resistance. Yang et al.[9] showed that 

among all bluff bodies, the square-sectioned one produces the highest output voltage. Daqaq [10] 

evaluated the performance of a GPEH using actual wind statistics and power density function by 

adopting the lumped parameter model.  

Based on the literature, the galloping aerodynamic force mainly modelled by a cubic polynomial 

and effects of higher-order approximations on the response of the system have not been 

considered. To fill this gap, this paper investigates the performance of a galloping PZT energy 

harvester considering third- and seventh-order polynomial representation for the aerodynamic 

force, both numerically and analytically. To this end, the mathematical model governing the 

aero-electromechanical system is provided in Sec. 2. Moreover, using the multiple scales method 

(MSM), the approximateanalytical solution of the problem is obtained in this section. The results 

are provided in Sec.3. Finally, the conclusions are given in Sec. 4. 

 



M. Rezaei et al. / Journal of Theoretical and Applied Vibration and Acoustics 6(2) 271-280 (2020) 

273 

 

2. Mathematical modelling 

The piezoelectric energy harvester is composed of a unimorph piezoelectric cantilever beam with 

an attached bluff body; the system is exposed to a laminar flow. The energy harvester and its 

simplified electrical circuit are illustrated in Figs. 1a and b, respectively. 

 

 

 

(a) (b) 

Fig. 1: (a) Schematic of the galloping PZT energy harvester (b) simplified electrical circuit 

 
The equations governing the displacement (𝑥) and generated voltage (𝑉) of the piezoelectric 

energy harvester can be described as: 

 𝑚�̈� + 𝑐�̇� + 𝑘𝑥 − 𝜃𝑉 = 𝐹𝑦 
(1) 

 𝜃�̇� + 𝐶𝑝�̇� +
𝑉

𝑅𝑙
= 0 (2) 

 
where 𝑚, 𝑐, and 𝑘 are the mass, damping, and stiffness of the coupled system, respectively. 

Moreover, 𝜃, 𝐶𝑝, and 𝑅𝑙 are respectively the electromechanical coupling coefficient, 

piezoelectric capacitance, and load resistance. Here, 𝐹𝑦 denotes the aerodynamic force and can 

be represented as: 

 
𝐹𝑦 =

1

2
𝜌𝑈2𝐿𝐷 [𝑎1

�̇�

𝑈
− 𝑎3 (

�̇�

𝑈
)

3

+ 𝑎5 (
�̇�

𝑈
)

5

− 𝑎7 (
�̇�

𝑈
)

7

+ ⋯ ] (3) 

 
in which 𝜌, 𝑈, 𝐿, and 𝐷 shows air density, flow speed, length of the bluff body, and cross-flow 

dimension of obstacle. In addition, 𝑎𝑛 stands for the n-th aerodynamic coefficient, which is 

obtained empirically. Based on Ref.  [11] 𝑎1 = 2.69, 𝑎2 = 168, 𝑎5 = 6270, and 𝑎7 = 59900.   

To generalize the results, the dimensionless forms of Eqs. (1) and (2) will be obtained by 

defining the following dimensionless parameters: 

 𝜏 = 𝜔𝑛𝑡   ;     𝑦 =
𝑥

𝐷
   ;     𝑣 =

𝐶𝑝

𝜃𝐷
𝑉  ;    𝑢 =

𝑈

𝜔𝑛𝐷
 (4) 
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where 𝜏, 𝑦, and 𝑣 are dimensionless time, displacement, and voltage, respectively; and 𝜔𝑛 is the 

fundamental frequency of the system. 
Introducing these parameters in Eqs. (1) and (2) and truncating the force series at the fourth term 

yields the dimensionless equations as: 

 
�̈� + 2𝜁𝑚�̇� + 𝑦 − 𝜅𝑣 = 2𝜇�̅�2 [𝑎1

�̇�

�̅�
− 𝑎3 (

�̇�

�̅�
)

3

+ 𝑎5 (
�̇�

�̅�
)

5

− 𝑎7 (
�̇�

�̅�
)

7

] (5) 

 �̇� + �̇� + 𝛼𝑣 = 0 
(6) 

where the dimensionless parameters in Eqs. (5) and (6) are defined as: 

 
𝜅 =

𝜃2

𝑘𝐶𝑝
    ;        𝜇 =

𝜌𝐿𝐷2

4𝑚
      ;        𝛼 =

1

𝑅𝑙𝐶𝑝𝜔𝑛
 (7) 

 
The geometrical and physical data of the system are provided in Table. 1. 

Table 1. The geometric and physical data [10, 12] 

Parameter (symbol) Value (unit)  

Cantilever beam length 0.209 m  

Effective mass (m) 0.1134 kg  

Damping ratio (𝜻𝒎) 0.003  

Air density (𝝆) 1.25 kg/m3  

Capacitance of piezoelectric layer (𝑪𝒑) 187 nF  

Electromechanical coupling (𝜽)            1.9 × 10-4 N/V  

Bluff body length (𝑳) 0.1 m  

Bluff body height (𝑫) 0.05 m  

 
 

  

(a) (b) 

Fig.2: Variations of dimensionless (a) displacement (b) voltage versus flow speeds  
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It is worth to mentioning that most of the previous studies used cubic polynomial representation 

of the aerodynamic force by neglecting  𝑎5 and 𝑎7 and assessed the system response. However, 

here, we investigate the effects of higher-order terms and compare the system response. To this 

end, using the numerical integration method, the diagrams of dimensionless displacement and 

voltage versus dimensionless flow speed are plotted for 3
rd

 and 7
th

 order aerodynamic forces in 

Fig. 2a and 2b, respectively. 

Inspecting Fig. 2, it is clear that there is a discrepancy between the results of 3
rd

 and 7
th

 order 

approximations in both displacement and voltage curves. This difference gets larger as the flow 

speed increases. This dictates that for the precise assessment of the dynamics of the energy 

harvester, especially at higher speeds, considering 7
th

 order approximation is superior to 3
rd

 order 

one. Moreover, the 7
th

 order force responses show jump up and jump down phenomena; hence 

multivalued solutions exist in the responses. The jumps are denoted by arrows. In the region 

between two jumps, the initial conditions determine the branch to which the solution attracts. So, 

the results are represented considering 7
th

 order polynomial aerodynamic force. 

 

2.1. Approximate-Analytical Solution 

In this section, the approximateanalytical solution of the problem will be obtained utilizing the 

multiple scales method (MSM). To this end, the following time scales are defined: 

 𝑇0 = 𝑡     ;     𝑇1 = 𝜀𝑡   ;  …  𝑇𝑛 = 𝜀𝑛𝑡 
(8) 

 
where 𝜀 is a small parameter called the bookkeeping parameter. Then, the solutions are sought in 

the forms of [13]: 

 𝑦(𝑡) = 𝑦0(𝑇0, 𝑇1) + 𝜀𝑦1(𝑇0, 𝑇1) + 𝑂(𝜀2) 
(9) 

 𝑣(𝑡) = 𝑣0(𝑇0, 𝑇1) + 𝜀𝑣1(𝑇0, 𝑇1) + 𝑂(𝜀2) 
(10) 

(10) 
The damping, electromechanical coupling, and aerodynamic force are scaled such that they 

appear in the first-order perturbation problem, so: 

 𝜁𝑚 = 𝜀𝜁𝑚     ;      𝑎1 = 𝜀𝑎1   ;    𝑎3 = 𝜀𝑎3  ;   𝑎5 = 𝜀𝑎5  ;   𝑎7 = 𝜀𝑎7  ;  𝜅 = 𝜀𝜅 
(11) 

 

 
Using chain role and defining 𝐷𝑛 = 𝜕/𝜕𝑇𝑛, Eqs. (5) and (6) can be rewritten as: 

 (𝐷0
2 + 2𝜀𝐷0𝐷1)(𝑦0 + 𝜀𝑦1) + 2(𝜀𝜁𝑚 − 𝜇𝜀𝑎1𝑢)(𝐷0 + 𝜀𝐷1)(𝑦0 + 𝜀𝑦1) + (𝑦0 + 𝜀𝑦1)

+
2𝜇𝜀𝑎3

𝑢
{(𝐷0 + 𝜀𝐷1)(𝑦0 + 𝜀𝑦1)}3 −

2𝜇𝜀𝑎5

𝑢3
{(𝐷0 + 𝜀𝐷1)(𝑦0 + 𝜀𝑦1)}5

+
2𝜇𝜀𝑎7

𝑢5
{(𝐷0 + 𝜀𝐷1)(𝑦0 + 𝜀𝑦1)}7 − 𝜀𝜅(𝑣𝑜 + 𝜀𝑣1) = 0 

(12) 

 (𝐷0 + 𝜀𝐷1)(𝑣0 + 𝜀𝑣1) + 𝛼(𝑣0 + 𝜀𝑣1) + (𝐷0 + 𝜀𝐷1)(𝑦0 + 𝜀𝑦1) = 0 
(13) 
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Separating the coefficients of 𝒪(𝜀0) and 𝒪(𝜀1) equations yields: 
 
 {

𝐷0
2𝑦0 + 𝑦0 = 0          

𝐷0𝑣0 + 𝛼𝑣0 = −𝐷0𝑦0
      

 

(14) 

 
{
𝐷0

2𝑦1 + 𝑦1 = −2𝐷0𝐷1𝑦0 − 2(𝜁𝑚 − 𝜇𝑎1𝑢)𝐷0𝑦0 + 𝜅𝑣0 −
2𝜇𝑎3

𝑢
(𝐷0𝑦0)3 +

2𝜇𝜀𝑎5

𝑢3
(𝐷0𝑦0)5 −

2𝜇𝜀𝑎5

𝑢3
(𝐷0𝑦0)5

𝐷0𝑣1 + 𝛼𝑣1 = −(𝐷0𝑦1 + 𝐷1𝑦0) − 𝐷1𝑣0                                                                                                                            
 

(15) 

 
The solution of the zeroth-order problem (Eq. (15)) can be stated as: 

 𝑦0 = 𝐴(𝑇1)𝑒𝑖𝑇0 + 𝐶𝐶 
(16) 

 𝑣0 =
𝑖

𝑖 + 𝛼
𝐴(𝑇1)𝑒𝑖𝑇0 + 𝐶𝐶 (17) 

 
where 𝐶𝐶 denotes the complex conjugate of the preceding term. Introducing the above solutions 

in the first equation of the first-order problem yields: 

 𝐷0
2𝑦1 + 𝑦1 = −2{𝑖𝐷1A𝑒𝑖𝑇0} − 2(𝜁𝑚 − 𝜇𝑎1�̅�){𝑖A𝑒𝑖𝑇0} +   𝜅

𝑖

𝑖 + 𝛼
𝐴𝑒𝑖𝑇0 −

2𝜇𝑎3

𝑢2
{3𝑖𝐴2�̅�𝑒𝑖𝑇𝑜}

+
2𝜇𝑎5

𝑢3
{10𝐴3�̅�2𝑖𝑒𝑖𝑇0} −

2𝜇𝑎7

𝑢5
{35𝐴4�̅�3𝑖𝑒𝑖𝑇0} + 𝑁𝑆 

(18) 

 

where NS stands for non-secular terms. Assuming 𝐴 = 1/2  𝑎(𝑇1)𝑒𝑖𝛾(𝑇1) and omitting secular 

terms results in: 

 −2𝑖𝐷1𝐴 − 2(𝜁𝑚 − 𝜇𝑎1𝑢)𝐴𝑖 − 𝜅
1 + 𝑖𝛼

1 + 𝛼2
𝐴 −

6𝜇𝑎3

𝑢
𝐴2�̅�𝑖 +

20𝜇𝑎5

𝑢3
𝐴3�̅�2𝑖 −

70𝜇𝑎7

𝑢5
𝐴4�̅�3𝑖 = 0 (19) 

 
Separating real and imaginary parts of Eq. (19) gives the following modulation equations: 

 𝐷1𝑎 = − (𝜁𝑚 − 𝜇𝑎1𝑢 −
𝜅𝛼

2(1 + 𝛼2)
) 𝑎 −

3

4

𝜇𝑎3

𝑢
𝑎3 +

5

8

𝜇𝑎5

𝑢3
𝑎5 −

35

64

𝜇𝑎7

𝑢5
𝑎7 = 0 (20) 

 𝐷1𝛾 =
𝜅

2(1 + 𝛼2)
 (21) 

 
Setting 𝐷1𝑎 = 0, the following equation governing the amplitude of the steady-state response (a) 

is obtained: 

 − (𝜁𝑚 − 𝜇𝑎1𝑢 −
𝜅𝛼

2(1 + 𝛼2)
) 𝑎 −

3

4

𝜇𝑎3

𝑢
𝑎3 +

5

8

𝜇𝑎5

𝑢3
𝑎5 −

35

64

𝜇𝑎7

𝑢5
𝑎7 = 0 (22) 

 
Moreover, based on Eq. (17), the steady-state voltage amplitude can be stated as: 

 v =
1

√(1 + 𝛼2) 
𝑎 (23) 
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3. Results and Discussions 

In this section, the response of the galloping PZT energy harvester will be represented. First, the 

onset of instability speed will be obtained. Due to the fact that at the instability threshold the 

nonlinear terms are negligible compared to linear ones, a linear analysis will be carried out to 

obtain the onset of instability. The aero-electromechanical equation has three eigenvalues and 

galloping instability occurs as the real part of any of the eigenvalues turns from negative to 

positive. Hence, to obtain the onset of instability speed, the real part of eigenvalues should be 

plotted versus flow velocity. This is illustrated in Fig. 3 for three different damping values. 

 

 

Fig. 3: Onset of instability speed for three different damping values 

 
 

 

 

(a) (b) 

Fig. 4: (a) deflection (b) voltage versus flow speed. Dots and dashed lines represent the stable and unstable 

solutions, respectively 

As it is clear from Fig. 3, increasing the damping value increases the onset of instability speed. 

By using MSM solution, the displacement and voltage of the system versus flow speed are 

plotted in Fig. 4a and b, respectively. As illustrated in Fig. 4a,  the deflection of the beam 

increases by increasing the flow speed. Moreover,  the voltage amplitude is amplified by adding 

the flow velocity. This is in agreement with Eq. (23). Besides, as obtained from the numerical 
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solution in Fig. 2, the multivalued solutions between jump points are also shown in Figs. 4a and 

b. In addition to the numerically obtained graphs, the unstable branches of the deflection and 

voltage responses can be observed in the graphs obtained by MSM. Besides, in the forward 

sweep path, the mechanical and electrical responses undergo a saddle-node bifurcation at SN1 

point. At this point, the deflection and voltage both jump up from the lower branch to the higher 

one. On the other hand, in the backward sweep, the responses experience a saddle-node 

bifurcation at SN2 and they jump down to the lower branches. It is worth mentioning that the 

response in the multivalued sections depends on the initial conditions. To assess the effects of 

time constant ratio, the diagrams of displacement and power versus dimensionless time constant 

ratio (𝛼) are plotted in Fig. 5. 

 

 

 

(a) (b) 

Fig. 5: (a) displacement (b) power versus dimensionless time constant ratio 

Based on Fig. 5a, at the special value of 𝛼, the deflection reaches to its minimum value. This is 

due to the fact that, at this value of 𝛼, the coupled damping is maximum. On the other hand, in 

the region of minimum displacement, the output power has its maximum. Specifically, at this 

portion of 𝛼, the energy transfer is maximized. The maximum power is called optimum power 

and the corresponding value of 𝛼 is referred to as optimum time constant ratio.  

 

 

Fig. 6: Power versus time constant ratio for 3rd and 7th order approximation 
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Finally, the effect of aerodynamic force modelling can be assessed by comparing optimum 

powers. To this end, the graphs of power against 𝛼 for the scenarios of 3
rd

 and 7
th

 order 

aerodynamic force are given in Fig. 6. As it is obvious from Fig. 6, there is a significant 

difference between 3
rd

 and 7
th

 order force in estimating the output power. In other words, the 3
rd

 

order model underestimates the output power. Hence, to acquire a correct estimation, considering 

the higher orders is necessary. 

 

4. Conclusion 

In this paper, the influences of aerodynamic force representation on the dynamical response of a 

galloping PZT energy harvester were studied. The was system composed of a cantilever PZT 

beam with an attached bluff body. First, the electromechanical equations were provided. Then,  

the system response was investigated for 3
rd

 and 7
th

 order approximations using a numerical 

integration method. Results disclosed that the higher-order terms play a significant role in the 

system response. Then, an approximateanalytical solution utilizing the multiple scales method 

was obtained. Also, by using this solution, the stable and unstable branches of response were 

obtained and the bifurcation points and jump regions were determined. It was revealed that, on 

the contrary to the 3
rd

 order model, when the 7
th

 order model is used, the responses exhibit 

saddle-node bifurcations. Finally, comparing the optimum power of the system based on the 

different approximations demonstrated that considering the higher-order terms is necessary for 

the accurate assessment of the system response. 
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