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In this study, the method of multiple scales is used to perform a nonlinear 
vibration analysis of a mechanical system in two cases; with dry and 
lubricated clearance joints. In the dry contact case, the Lankarani-
Nikravesh model is used to represent the contact force between the joined 
bodies. The surface elasticity is modeled as a nonlinear spring-damper 
element. Primary resonance is discussed and the effect of the clearance size 
and coefficient of restitution on the frequency response is presented. Then, 
a frequency analysis is done using the Fast Fourier Transform. A 
comparison between the Lankarani-Nikravesh and Hunt-Crossly contact 
force models is made. The results obtained numerically and analytically 
had an acceptable agreement. It is observed that decreasing the clearance 
size changes the frequency response in the primary resonance analysis. 
Furthermore, Hunt-Crossly contact force model showed a slightly more 
dissipative effect on the response. In the lubricated joint case, a linear 
spring and a nonlinear damper based on the Reynolds equation developed 
for Sommerfeld’s boundary conditions are used to model the lubricant 
behavior. It is shown that only the fluid stiffness has influence on the 
amplitude of the steady state response and the fluid does not make any 
effect on the response frequencies after the transient response vanishes. The 
steady state response frequency for both dry and lubricated cases depends 
on the linear natural frequency corresponding to the pendulum oscillation. 
In the primary resonance analysis, increasing the dynamic lubricant 
viscosity decreases the amplitude in the vicinity of the linear natural 
frequency as expected. 
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1. Introduction 

In multibody systems, kinematic joints are generally assumed to be without clearance. However, 
in real mechanical joints, there is always some clearance between the journal and the bearing. 
This clearance is necessary in the assembly of the mechanical system because it allows the 
connected bodies to move relative to each other. The clearance exists due to machining 
tolerances, wear, material deformations and imperfections and it can deteriorate the performance 
of the mechanism regarding its precision and vibrational behavior. The clearance can lead to 
some deficiencies in the efficient and precise performance of mechanical systems. The influence 
of clearance on the dynamic response of the mechanical systems has been greatly investigated in 
the literature. However, nonlinear vibrational analysis of such systems is less presented. 
Numerical solution is the most common method for solving problems including clearance. 
Analytical solution can also be used to provide deeper insight into the system behavior by 
inspecting the effect of a certain parameter on the dynamic response. 

Clearance has attracted a vast investigation by researchers. Three major types of clearance model 
can be found in the literature, namely, the massless link approach, the spring–damper approach 
and the momentum exchange approach. In the momentum exchange approach, the clearance is 
modeled through considering two colliding bodies and the dynamic behavior of the system is 
controlled by the impact-contact force between them. The impacts in the clearance joint make 
high contact force and consequently high acceleration. This model is more realistic than the two 
other approaches due to considering the contact forces as a function of surface elasticity in 
addition to taking into account the energy dissipation during impact [1]. Dubowsky and 
Freudenstein [2] used an impact pair model for the joint clearance. In their model, the contact 
surface was considered as a spring-damper element which was apart from the other surface 
within the clearance size. Rhee and Akay [3] studied the response of a four-bar linkage with a 
clearance joint and revealed that there is a nonlinear dependence on both the clearance size and 
the coefficient of friction between the journal and the bearing. Ravn [4] investigated a slider-
crank mechanism with a clearance in the joint between the coupler and the slider. The continuous 
contact force model in which the contact force was a function of the amount of penetration 
between the journal and the bearing was used. Schwab et al. [5] compared several continuous 
contact force models with an impact model. It was realized that the compliance of the links or 
lubrication of the joint makes the peak values of the contact forces smoother. Flores et al. [6] 
studied the clearance in a multibody system taking lubrication into account. The compressive 
force exerted by the lubricant, when the journal and the bearing are not in contact, was 
considered in the equations of motion. Spatial flexible multibody systems was investigated by 
Tian et al. [7], taking the influences of the clearances and lubrication in the system spherical 
joints into account. Tian et al. [8] introduced a method to model and study the flexible spatial 
multibody systems with clearance cylindrical joints. For more information on the lubricated 
clearance joint, the reader is referred to [9, 10]. Brutti et al. [11] modeled a 3D clearance revolute 
joint with computer which could be implemented in multibody dynamic solvers. The dynamic 
behavior of a planar flexible slider-crank mechanism with clearance was investigated by Khemili 
and Romdhane [12]. The model was created in the ADAMS software and experimental 
investigations were carried out. It was revealed that the coupler flexibility acts as a suspension 
for the linkage in the presence of clearance. A method was introduced by Mukras et al. [13] to 
investigate the planar multibody systems in which wear appears at one or more revolute joints. 
The influence of the clearance on the slider acceleration, contact force and power consumption 
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was studied in a multi-objective optimization problem introduced by Zhang et al. [14]. Some 
other investigations on the optimization of mechanical systems with clearance can be found in 
[15-17]. Due to high nonlinearity of the clearance joint behavior, some effort has been dedicated 
to the investigation of the chaos and bifurcation in multibody systems with clearance (see [18, 
19]). 

Although there is a great amount of research on modeling the clearance and investigating its 
influence on the dynamic response of the multibody systems, few research works consider the 
effect of clearance and surface elasticity on the vibrational behavior. Vaidya and Padole [20] 
considered a four-bar linkage with clearance. They modeled the bearing stiffness as a linear and 
torsional spring and added this stiffness to the assembled stiffness matrix to find out the effect of 
joint flexibility on natural frequencies. Erkaya [21] investigated the effect of clearance on the 
vibration of the bearing for a slider-crank mechanism. He designed a neural network for different 
clearance sizes and velocities. He obtained the data from three accelerometers to recognize the 
system vibration. The network inputs were time, clearance size, velocity and the material of the 
mechanism and its outputs were the three accelerometers’ data. Yang et al. [22] studied the 
vibrational modes of a cantilever beam with a block placed on it including clearance. 
Furthermore, very limited attention has been devoted to qualitative analysis of the effect of 
surface elasticity in clearance joints on the dynamic response and vibrational behavior of 
mechanical systems. The multiple scales method can be used to solve the equations of motion 
analytically. Although this method has some limitations to be used in solving more complex 
equations of motion, the closed-form solution, if obtained, provides a deeper insight into system 
behavior [23]. 

As a new study, in this paper, the method of multiple scales is used to perform a nonlinear 
vibrational analysis of a sliding pendulum including clearance with and without lubrication. 
Analytical solution can be used to give deeper insight into the system behavior understanding the 
effect of a certain parameter on the dynamic response. The momentum exchange approach is 
used to model the clearance. In the dry joint case, the Lankarani-Nikravesh contact force model 
is employed to model the contact force between the joined bodies. The surface elasticity is 
modeled as a nonlinear spring and a nonlinear damper which are described by the above 
mentioned contact force model. The nonlinear spring shows the Hertz contact law while the 
nonlinear damper represents the energy dissipation during contact through using the Lankarani-
Nikravesh contact force model. Primary resonance is explained and the influence of the bearing 
radius (clearance size) and the restitution coefficient on the frequency response is shown. Then, a 
frequency analysis is performed using the Fast Fourier Transform. A comparison between the 
Lankarani-Nikravesh and Hunt-Crossly contact force models is made. In the lubricated joint 
case, a linear spring and a nonlinear damper based on the Reynolds equation developed for 
Sommerfeld’s boundary conditions are used to model the lubricant behavior. The numerical and 
analytical responses are compared and the effect of the dynamic lubricant viscosity on the 
system’s frequency response in primary resonance analysis is investigated. 

2. Sliding pendulum with dry and lubricated clearance joints 

In this study, a pendulum attached to a slider moving with a constant velocity is modeled. A 
clearance is supposed to exist in the joint between the slider and the guide. The contact is 



S. Ebrahimi et al. / Journal of Theoretical and Applied Vibration and Acoustics 3(1) 41-60(2017) 

44 
 

modeled with a nonlinear spring based on the Hertzian theory and a nonlinear damper proposed 
by Lankarani and Nikravesh [1]. The real system and its simplified model are shown in Fig. 1.  

 
Fig.1. Model of the clearance between the slider and the guide 

The motion of the slider perpendicular to the plane, outwards or inwards, is not considered. In 
addition, it is assumed that the angle between the contact force and the vertical line is small 
enough to consider the contact force as vertical. Lack of force in the tangential direction may be 
a good justification for such assumption. 

2.1. Equations of motion 

The equations of motion are derived using the generalized Newton’s second law of motion as 
follows: 

     2
1 1sin( ) cos( )

2 2N

L L
m m y m F m m g m           (1) 

 2

sin( ) sin( )
2 3 2

L L L
m y m mg      (2) 

where m is the pendulum mass, 1m  is the slider mass, L is the pendulum length,   is the angular 
position of the pendulum and y is the vertical position of the slider with respect to the center of 
the guide line. 

It is noteworthy to mention that when the journal and the bearing are not in contact, the contact 
force is set to be zero. This could be found by calculating the relative penetration as: 

 y c    (3) 

where c is the clearance size. The contact force in the equations of motion is omitted if   is 
negative since there is no contact between the journal and the bearing. When the relative 
penetration is positive, the contact force is calculated and is incorporated into the equations. 

2.2. Contact force model 

The Hertzian theory is the basis of many contact force models which introduce terms to represent 
the energy dissipation during the contact-impact phenomenon. Pure elastic contact force models 
cannot consider the energy dissipation during the contact process. Hence, more developed 
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contact force models must be used to take the energy loss into account. Several researchers 
improved the Hertz contact law to consider energy dissipation in the form of internal damping. 
The models suggested by Hunt and Crossley (1975), Lankarani and Nikravesh (1990), Gonthier 
et al. (2004), Flores et al. (2011) and Gharib and Hurmuzlu (2012) are instances of models that 
are employed to study multibody systems having contacts [24]. In this research, the Lankarani-
Nikravesh contact force model is considered. This model is expressed as: 

  
 

 
 

2 2

1.5 1.5 1.5
3 1 3 1

1
4 4

r r

N

e e
F k k k

   
  

  
       
 
 




 
 (4) 

 

 

1
22 14

, ,
3

i j k
k

i j ki j

R R
k h k i j

R R Eh h

  
      

 (5) 

where k is the generalized stiffness constant,   is the amount of relative penetration, re  is the 

coefficient of restitution,   is the penetration velocity,     is the initial penetration velocity, X

is the hysteresis factor, iR  and jR  are the radii of the slider hole and the guide rod,   is the 

Poisson’s ratio and E is the elastic modulus of the colliding bodies. It should be mentioned that 
the contact force model proposed by Lankarani and Nikravesh is valid when the dissipated 
energy during contact, as compared with the maximum absorbed elastic energy, is relatively 
small. Moreover, Eq. (4) is valid for impact velocities smaller than the propagation velocity of 
elastic waves across the two bodies; ( ) 510 E    where E is the Young’s modulus and   is 

the material mass density. The quantity E   is the larger of two propagation velocities of the 

elastic deformation waves in the impacting bodies [24]. The result of this model is compared 
with the Hunt and Crossley contact model described as: 

  
 

 
 

1.5 1.5 1.53 1 3 1
1

2 2
r r

N

e e
F k k k

   
  

  
       

 




 
 (6) 

2.3. Contact force Taylor expansion 

Considering the oscillations about equilibrium position one can write, 

 y y y    (7) 

where y  is the equilibrium position of the slider and y   is the amount of deviation from the 
equilibrium position. Substituting Eq. (7) into Eq. (4) and using the Taylor expansion, the contact 
force is written as: 

 

         
1.5 1.5

1.5 1.51.5 1.51.5 1.5

0 0

0

( ) ( )

NF
k

k k y c y c y k y y c y y c y



   

    


 

  

                   



  

 (8) 
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    
* *

1.5 1.5* * * 1.5 1.5 1.5 1.5 *

2 2

1.5 1.5 *

( ) (1 ) (1 ) ( )

3 3 3 3
1 ... 1 ... ( )

2 8 2 8

y y
k y X y y k X y

y y y y
k X y

y c y y c 

   

             
 

      
                            

        

 



 

 

Substituting the resulting contact force into the equations of motion one can obtain: 

 3 2
2 2 2 2

1 1 2 3 4 5 5 1
6 2

u u u u uu u u u y
              

             
   

      (9) 

 3
2 3

2 6 76
u

      
 

    
 

   (10) 

with 

 2 0.5 2 0.5 1.5
1 2 1 2

1 1 1

2
0.5 0.5 2

3 4 5 6 7
1 1 1

3 3 3

2 2 8

3 3 3

2 8 2( ) 2 6

k g k X

m m L m m m m

X X mL

m m m m m m L

   


    





      
  

      
  

 (11) 

where 1  and 2  are the linear natural frequencies. 

2.4. Non-contact mode 

In the non-contact mode, the equations of motion are obtained by setting the contact force to be 
zero. These equations are expressed as, 

     2
1 1sin( ) cos( )

2 2

L L
m m y m m m g m           (12) 

 2

sin( ) sin( )
2 3 2

L L L
m y m mg      (13) 

2.5. Lubrication model 

The joints are designed to operate with some lubricant in most machines and mechanisms. The 
journal and the bearing could be kept separate from each other by high pressures produced in the 
lubricant. In addition, the lubricant forms a thin film which decreases friction and wear, supplies 
load capacity and adds damping to dissipate unwanted mechanical vibrations. When a fluid is 
squeezed between two approaching surfaces, the squeeze forces are generated. In journal 
bearings, when the relative rotational velocity is small with respect to the relative radial velocity, 
the squeeze action is governing and hence, it is rational to neglect the wedge term in the 
Reynolds’ equation. Integrating the pressure field over the surface of the journal, the resulting 
force F on the journal that equilibrates the fluid pressure is calculated as in [25]: 
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 
3

3/22 2

12

1

JB JL R y
F

cc


 




 


  

(14) 

where   is the dynamic lubricant viscosity, JBL  is the journal bearing length, JR is the journal 
radius, c is the radial clearance,   is the eccentricity ratio and   is the time rate of change for the 
eccentricity ratio. Eq. (14) is derived for infinitely long journal bearing in which the length-to-
diameter ratio is larger than 2. Since the squeeze force is proportional to the rate of decrease of 
the fluid film thickness, it is obvious that the lubricant resists the load as a nonlinear viscous 
damper when the film thickness is reducing [25]. However, the fluid could have the spring role 
as well. In this paper, it is assumed that the fluid acts as a linear spring and a nonlinear viscous 
damper. Therefore, the behavior of the fluid is described as, 

 

   
3 3

3/2 3/2 22 2 2

12 12
( )

1 1

JB J JB JL R L R
F k y D ky D

cc

 
 

     
 


  

(15) 

This force is substituted into Eq. (1) instead of the contact force to achieve new equations of 
motion. These new equations are valid when the lubricated journal and the bearing are not in 
contact. This force could be expanded using Eq. (7) as, 

 

3/2*
2 *

3/22

*
2 * 2 2 *

2

1 ( ) ( )
1

3 3
(1 ( ) ) ( ) (1 ( 2 ))

2 2

y y y
F D ky D k y y

c c

u y y u
D k y y D u yu y ku ky u y

c c c c






          

  

                 
   

 

 
 

(16) 

 Substituting the expanded force into the equations of motion one obtains, 

 3 2
2 2 2

1 1 2 3 4 4
ˆ ˆ ˆ ˆ ˆ ˆ 1

6 2
u u u uu u u

         
   

          
   

      (17) 

 3
2 3

2 5 6
ˆ ˆ

6
u

      
 

    
 

   (18) 

with 

 2
2 2

1 2 1 22 3
1 1 1

2
2

3 4 5 63
1 1

3 3 3
ˆ ˆ ˆ(1 )

2 ( ) 2 ( )

3 3
ˆ ˆ ˆ ˆ

2( ) 2( ) 2 6

k g D y Dy

m m L m m c c m m c

D mL

m m c m m L

   

   


    

  

   
 

 (19) 

3. Nonlinear vibration analysis using the method of multiple scales 

In mathematics and physics, the method of multiple scales consists of the techniques used to 
make uniformly valid approximations to the solutions of perturbation problems both for small as 
well as large values of the independent variables. This is carried out by introducing fast-scale and 
slow-scale variables for an independent variable and then treating these variables, fast and slow, 
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as though they are independent. The consequent extra freedom presented by the new independent 
variables is employed to eliminate unwanted secular terms in the solution process of the 
perturbation problem. The latter puts restraints on the approximate solution which are 
called solvability conditions [26]. The fundamental notion of the method of multiple scales is to 
consider the expansion denoting the response to be a function of multiple independent variables, 
or scales, in place of a single variable. This method can deal with damped systems conveniently 
[27]. Although with this method one can qualitatively understand the effect of different 
parameters in the vibrational response of a nonlinear system and have an insight into the 
frequency response of the system, it has some restrictions as well. Handling the weak 
nonlinearities and its limitation in solving some nonlinear problems could be a defect for the 
versatility of this method. To show the application of this method for a system with clearance, it 
is used to solve Eqs. (9-10) and Eqs. (17-18) in the subsequent section. 

 3.1. Analytical solution 

In order to implement the method of multiple scales to solve the equations analytically, one 
assumes that the solution can be represented by an expansion in the following form: 

 
0 0 1 1 0 1 0 0 1 1 0 1 0 1( , ) ( , ) , ( , ) ( , ) , ,u u T T u T T T T T T T t T t           (20) 

where 0T  and 1T  are independent time scales. The derivatives with respect to t  turn into 
expansions in terms of the partial derivatives with respect to 0T  and 1T  according to, 

 

 

0 1
0 1

0 1

2
2 2 2
0 0 1 1 0 12

...

2 2 ...

dT dTd
D D

dt dt T dt T

d
D D D D D D

dt



 

 
    

 

    

 (21) 

3.1.1. Dry contact 

The damping and nonlinearities tend to counter the influence of the resonances [28]. If they 
exist, they are scaled by   to appear in the second equation (  is a small dimensionless 
parameter and not the eccentricity ratio). Equating the identical powers of 0  yields, 

 1 0 1 02 2
0 0 1 0 0 1 10 ( ) ( )i T i TD u u u A T e A T e        (22) 

 2 0 2 02 2
0 0 2 0 0 1 10 ( ) ( )i T i TD B T e B T e           (23) 

Then equating the identical powers of 1  yields, 

        

   

22 2 2 2 2
0 1 1 1 5 0 0 0 5 0 0 0 0 1 0 0 0 3 0 0 0 4 0

22 2 3
2 0 0 1 0 5 0 0 5 0 0 0

0.5 2

1

6

D u u D D D D u D u u D u u

D u u D D

        

      

      

   
 (24) 

    2 2 3 2 2 3
0 1 2 1 0 1 0 7 0 6 0 0 0 6 0 0 0

1
2

6
D D D D u D u                (25) 

Substituting the solutions of Eqs. (22-23) into Eqs. (24-25), the secular terms are derived as, 
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 2
2 1 4 1 1 12 0IA IA A I D A         (26) 

 2
7 2 13 2 0B B I D B    (27) 

It is convenient to express  1A T  and  1B T  in polar forms as, 

   1I (T )
1 1

1
a(T )e

2
A T   (28) 

   1I (T )
1 1

1
b(T )e

2
B T   (29) 

Substituting into secular terms one obtains, 

 
1 20a c      (30) 

 

2 1

23
2 1 4 1 1

2 1 4

21 1
0

2 8 4 t
a a a a

c e


    
 

     


  (31) 

 
2 30i b b c     (32) 

 2
2 3 7 1

2 7 4
2

3 3
0 c

8 8

c T
b


   


       (33) 

where 1 2 3 4, , ,c c c c  are constants and are determined by initial conditions. The dynamic response 
can be written as, 

 2 2
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  
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 (34) 
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(35) 
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The last four terms of the y solution decays exponentially with time and vanishes when the 
system reaches its steady state. The first five terms represent the steady state response. After the 
system reaches its steady state, the slider oscillates with two frequencies described as, 

 2
2 22

2 2 3 2
27 3 2

2 3 2
2 2

12( ) 3212 32 16 4 2.44
8 8 4

cc
c Hz

  
 

 

  
     (36) 

 2
2 22

2 2 3 2
27 3 2

2 3 2
2 2

6( ) 166 16 16 2 1.219
8 8 8

cc
c Hz

  
 

 

  
     (37) 

In addition, the pendulum oscillates with the following frequency, 

 2
2 22

2 2 3 2
27 3 2

2 3 2
2 2

3( ) 83 8 16 0.6094
8 8 16

cc
c Hz

  
 

 

  
     (38) 

As can be seen, when transient response vanishes, the slider oscillates with frequencies which are 

dependent on the linear natural frequency corresponding to the pendulum oscillation ( 2 ) and 
the square of the amplitude of the pendulum. This means that in the steady state, the first linear 

natural frequency ( 1 ) which is associated to the vertical displacement of the slider is not 
involved in the response. Furthermore, the pendulum angle is not affected by the vertical 
displacement of the slider as can be seen from Eq. (34). Therefore, it could be deduced that the 
pendulum motion affects the steady state vertical displacement of the slider but the opposite 
effect could be negligible. 

3.1.2. Non-contact mode solution 

When the slider and the guide are not in contact, Eqs. (12-13) have to be solved. The solution for 
the pendulum angle is achieved as, 

  2 2 2
3 4 3 3 2 2

3
cos( ) -0.0625 0.0625 0.5 1

2

g
c bt c b c c

L
             (39) 

Substituting Eq. (39) into Eq. (12) and integrating twice, the vertical position of the slider is 
calculated as, 
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 (40) 
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The term 
21 2 gt  of the solution is related to the free fall of the system (including the guide and 

the slider) because no external force is applied to the system except its weight. Furthermore, the 
trigonometric parts of the solution could be due to the rotational motion of the pendulum relative 
to the guide when the system falls freely. For contact and non-contact phases, their 
corresponding solutions are used to determine the system response. In each transition from the 
non-contact phase to the contact phase or vice versa, the initial conditions for the new phase are 
the same as the conditions at the end of the previous one and should be used to determine the 
solution constants. 

3.1.3. Lubricated joint 

Following the procedure in section 3.1.1, the steady solution of Eqs. (17-18) are obtained as, 

 2 2
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(42) 

Similar to dry contact, in the steady state, the first linear natural frequency corresponding to the 
vertical displacement of the slider ( 1̂ ) is not involved in the response and the slider oscillates 

with frequencies which are dependent on the linear natural frequency corresponding to the 
pendulum oscillation ( 2 ) and the square of the amplitude of the pendulum. 

3.2. Primary resonance 

If a high frequency harmonic external force is applied on the slider vertically, a primary 
resonance could happen. This high frequency external force could be generated if a high-speed 
motor mounted on the slider has an unbalance mass. The external force term 0 cos( )F F t   is 
scaled by   to appear in the second equation for primary resonance. To show quantitatively the 
nearness of the primary resonance, the detuning parameter   is introduced defined as follows, 

 1     (43) 

Substituting Eq. (43) into the equations of motion and using the method of multiple scales, the 
secular term will change as, 
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1 1 4 1 2 1 0
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2 0

2
i Ti D A i A A i A F e           (44) 
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Using Eq. (28) and separating imaginary and real parts one can write, 

 3
1 0 1 4 1 2 1 0 1

1 1 1 1
cos( ) 0 , sin( ) 0 ,

2 8 2 2
a F a a a F T                      (45) 

where the prime denotes the derivative with respect to 1.T  The steady state response corresponds 

to 0.a    After squaring and adding the equations, the frequency response is achieved as, 

 2 2
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4 2 2 2
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8 2 4

F
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  


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 (46) 

Following the same procedure the frequency response for the lubricated clearance joint is 
obtained: 

 2 2
2 2 0

3 1 2 2
1

1 1
ˆ ˆ

ˆ8 2 4

F
a

a
  


    
 

 (47) 

4. Results and discussion 

The properties of the system used in the simulation are listed in Table 1. The initial angular 
position of the pendulum is 10 degrees and it is initially at rest. The initial vertical position and 
velocity of the slider are -0.000499 m and 0 m/s respectively. The slider is thus not in contact 
with the guide initially. Firstly, the equations of motion are integrated numerically using the 
Runge-Kutta-Fehlberg method [29]. These equations are then solved analytically when the slider 
and guide are in contact to see the effect of surface elasticity on the dynamic and vibrational 
response of the system. The impact velocity could be calculated from the non-contact solution 
and substituted into the contact force model instead of     to determine the hysteresis factor .X  

Table 1. The properties of the sliding pendulum used in simulation 

Parameters Values Units 

Pendulum mass 50 kg 
Slider mass 0.2 kg 
Pendulum length 1 m 
Modulus of elasticity 200 GPa 
Poisson’s ratio 0.3 - 
Radius of slider hole 0.0055 m 
Radius of rod 0.005 m 
Clearance 0.5 mm 

4.1. Effect of contact force terms in Taylor expansion 

The results of numerical solution (vertical position of the slider) for the equations of motion in 
three cases are shown in Fig. 2. The first case relates to the contact force described by Eq. (4) 
and the other two cases are related to the equations of motion in which the contact force is 
replaced by the Taylor expansion with the first two and three terms presented in Eq. (8). Both 
contact and non-contact phases are considered in the solution code. Therefore, when the amount 
of penetration is positive, the contact force is included in the equations of motion. Otherwise, it 
is set to be zero. As can be seen, a relatively good agreement exists between the results. It is thus 
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concluded that replacing the contact force by the first two or three Taylor expansion terms can 
make a negligible error. This substitution is accomplished to apply the analytical method. 

4.2. Verification 

Results from numerical and analytical solutions are shown in Fig. 3. One contact happens as 
pointed out in the figure. The two terms of the Taylor expansion are used for the dissipation part 
of the contact force model ( 4 0  ). As it can be seen, the results are in an acceptable agreement 
with each other. The exact result for the pendulum angle is obtained with just the first expansion 
term while the vertical position of the slider is plotted using two terms in permanent contact 
mode. The non-contact response is plotted with black dashed line in Fig. 3a obtained from the 
analytical solution of Section 3.1.2 for the non-contact mode. 

Fig. 2. Vertical position of the slider with and without Taylor expansion obtained from numerical simulation 

The multiple scales method could obtain a closed-form solution to the problem which provides a 
deeper insight into the dynamic and vibrational behavior of the system. The effect of the surface 
elasticity (contact) on the dynamic response can be pursued in the closed-form solution. In 
addition, some vibrational analysis such as investigating primary resonance in the presence of 
external force is available when using the multiple scales method. 

  
(a) (b) 

Fig. 3. Comparison of the numerical and analytical (multiple scales method) responses, (a) slider vertical position, 
(b) steady state slider vertical position, (c) pendulum angle 
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(c) 

Fig. 3. (Cont.) 

4.3. Primary resonance for dry contact 

The frequency response for different clearance sizes are plotted in Fig. 4. The rod’s radius is set 
to be 0.005 m as before but the radius of the slider’s hole varies to change the clearance size. The 
amplitude of the external force is chosen to be 10 N. According to Eq. (5), changing the radius of 
the hole changes the generalized stiffness correspondingly. The stiffness affects the coefficients

2 , 4  and 1  as can be perceived from Eq. (11) and this issue changes the frequency response 
(see Eq. (46)). The frequency response then changes when the radius of the hole and the resulting 
clearance size varies. As seen, the amplitude of the vertical position of the slider increases in the 
vicinity of the first linear natural frequency. If the energy dissipation term is not taken into 
account in the contact force model, this amplitude may increase so much that the system could 
get exposed to failure. By considering this material damping term, the amplitude is bounded as 
shown in Fig. 4. Decreasing the outer radius and the resulting clearance size decreases the 
amplitude in the vicinity of the linear natural frequency as can be apparently seen. In addition, 
decreasing the coefficient of restitution makes the frequency response come down. This was 
expected due to increasing the material damping when the coefficient of restitution decreases.  

 
(a) (b) 

Fig. 4. Frequency response (a) for different coefficients of restitution, (b) for different clearance sizes 



S. Ebrahimi et al. / Journal of Theoretical and Applied Vibration and Acoustics 3(1) 41-60(2017) 

55 
 

4.4. Frequency analysis 

In this section, analysis of the system response is carried out in frequency domain. For this 
purpose, the Fast Fourier Transform is used and FFT plots for vertical displacement of the slider 
w.r.t the steady state equilibrium position and pendulum angle are shown in Fig. 5(a-c). Fast 
Fourier Transform is performed on the numerical results to compare the frequencies of the 
response with those of the closed-form solution obtained from analytical method. As expected, 
the obtained frequencies match well with the results in section 3.1.1 in Eqs. (37-38). The 
frequency 252.7 Hz corresponds to the frequency 1  in the transient response. Frequencies in the 
closed-form solution like 12  and 2.44 Hz are not achieved in FFT analysis because the 
amplitudes of the terms containing these frequencies are small compared to others. It is therefore 
concluded that implementing an analytical method could give a deeper insight into the dynamic 
response of mechanical systems which is not fully obtained when treating the problem 
numerically. 

  
(a) (b) 

 
(c) 

Fig. 5. FFT plots, (a, b) for vertical displacement of the slider w.r.t the steady state equilibrium position, 
(c) pendulum angle 
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4.5. Hunt-Crossly contact force model 

In this section, a comparison is made between the contact force models of Lankarani-Nikravesh 
and Hunt-Crossly. For this purpose, the vertical position and velocity of the slider and the 
frequency response around the primary resonance are plotted in Fig. 6(a-c) for the two models. 
As can be seen, the vertical position of the slider for both models are nearly the same except that 
the amplitudes for the Hunt-Crossly model is slightly less than the other. Comparing the 
frequency response shows that in the Hunt-Crossly contact force model, the amplitude is more 
bounded. These comparisons reveal that the Hunt-Crossly contact force model shows a slightly 
more dissipative behavior. 

  

(a) (b) 

 

(c) 

Fig. 6. Comparison between Lankarani-Nikravesh and Hunt-Crossly models: (a) vertical position of the slider, (b) 
vertical velocity of the slider and (c) frequency response for clearance size 0.5 mm 

4.6. Lubricated joint 

The vertical position of the slider obtained numerically and analytically (multiple scales method) 
are compared in Fig. 7. The clearance size is set to be 0.08 mm, the journal bearing length is 40 
mm and the oil viscosity at 40º C is set to 400 cP. The stiffness constant corresponding to the 
fluid is chosen according to the range presented in [20] and is set to be 91.56 10 N m . The initial 
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angular position of the pendulum is 10 degrees and it is initially at rest. The journal and the 
bearing centers are coincident initially and the initial slider velocity is zero. For the above 
properties, no solid to solid contact happens in this simulation. The results are found in an 
acceptable agreement with each other. The effect of the fluid characteristics on the steady state 
dynamic response can be investigated in the closed-form solution. As it is apparent from Eq. 
(42), only the fluid stiffness has influence on the amplitude of the steady state response (see 1̂ ) 
and the fluid does not make any effect on the response frequencies after the transient response 
vanishes. 

 
(a) 

 
(b) 

Fig. 7. Comparison of the vertical position of the slider obtained numerically and analytically for the lubricated 
joint case: (a) transient response, (b) steady state response 

4.7. Primary resonance for the lubricated joint 

The frequency response for different dynamic lubricant viscosities are plotted in Fig. 8. The 
amplitude of the external force is chosen to be 10 N. Equation (47) is used to plot the frequency 
response. Changing the dynamic lubricant viscosity changes the terms 1̂  and 3̂  in the 
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frequency response equation. As expected, increasing the dynamic lubricant viscosity decreases 
the amplitude in the vicinity of the linear natural frequency. 

 
Fig. 8. Frequency response for different dynamic lubricant viscosities 

It is worth to note that, according to the relations (15) and (19), changing the dynamic lubricant 
viscosity , changes 3̂  and consequently the frequency response is changed as shown in Fig. 8. 
So, the nonlinear damping term 2

3ˆ u u   affects the amplitude of the slider in the frequency 
response curve. In addition, the coefficient 2̂  in 2

ˆ uu   does not appear in the frequency 
response because substituting 1 0 1 0

0 1 1( ) ( )i T i Tu A T e A T e    and its first derivative in the 
aforementioned term does not produce any secular term. The same reasoning could be made for 
the frequency response for the dry contact case. 

Furthermore, the cubic nonlinear stiffness term 3  which has the role of a soft spring in the 
second equation of motion, i.e. Eqs. (10) and (18), could bend the frequency response curve to 
the left if an external harmonic moment is applied to the pendulum.  

5. Conclusion 

In this study, the multiple scales method was used to perform a nonlinear vibrational analysis of 
a sliding pendulum in two cases with dry and lubricated clearance joint. The momentum 
exchange approach was used to model the clearance. In the dry contact case, the surface 
elasticity was modeled as a nonlinear spring and a nonlinear damper presented by the Lankarani-
Nikravesh contact force model. 

The dynamic response obtained analytically was in an acceptable agreement with the numerical 
results. Applying a harmonic excitation on the slider, the frequency response was plotted in the 
primary resonance condition. It was observed that decreasing the outer radius and the resulting 
clearance size decreases the amplitude in the vicinity of the linear natural frequency. In addition, 
decreasing the coefficient of restitution makes the frequency response come down. Fast Fourier 
Transform was performed on the numerical results to compare the frequencies of the response 
with those of the closed-form solution obtained from analytical method. As expected, the 
obtained frequencies were in good agreement with each other. The dynamic response using 
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Lankarani-Nikravesh contact force model was compared with Hunt-Crossly contact force model. 
The vertical positions of the slider for both models were nearly the same except that the 
amplitudes for the Hunt-Crossly model were slightly smaller. Comparing the frequency response 
showed that in the Hunt-Crossly contact force model, the amplitude was more bounded. 
Therefore, the Hunt-Crossly contact force model showed a slightly more dissipative behavior. In 
the lubricated joint case, a linear spring and a nonlinear damper based on the Reynolds equation 
developed for Sommerfeld’s boundary conditions were used to model the lubricant behavior. A 
closed-form solution for the response of the system with lubricated joint was obtained. It was 
shown that only the fluid stiffness had influence on the amplitude of the steady state response 
and the fluid did not make any effect on the response frequencies after the transient response 
vanished. The steady state response frequency for both dry and lubricated clearance joints was 
dependent on the linear natural frequency corresponding to the pendulum oscillation. In the 
primary resonance analysis, increasing the dynamic lubricant viscosity decreases the amplitude 
in the vicinity of the linear natural frequency as expected. 

References 

[1] P. Flores, J. Ambrósio, Revolute joints with clearance in multibody systems, Computers & Structures, 82 (2004) 
1359-1369. 
[2] S. Dubowsky, F. Freudenstein, Dynamic analysis of mechanical systems with clearances, Part I: Formation of 
dynamic model, Journal of Engineering for Industry, (1971) 305–309. 
[3] J. Rhee, A. Akay, Dynamic response of a revolute joint with clearance, Mechanism and Machine Theory, 31 
(1996) 121-134. 
[4] P. Ravn, A continuous analysis method for planar multibody systems with joint clearance, Multibody System 
Dynamics, 2 (1998) 1-24. 
[5] A.L. Schwab, J.P. Meijaard, P. Meijers, A comparison of revolute joint clearance models in the dynamic analysis 
of rigid and elastic mechanical systems, Mechanism and Machine Theory, 37 (2002) 895-913. 
[6] P. Flores, J. Ambrósio, J.P. Claro, Dynamic analysis for planar multibody mechanical systems with lubricated 
joints, Multibody System Dynamics, 12 (2004) 47-74. 
[7] Q. Tian, Y. Zhang, L. Chen, P. Flores, Dynamics of spatial flexible multibody systems with clearance and 
lubricated spherical joints, Computers & Structures, 87 (2009) 913-929. 
[8] Q. Tian, C. Liu, M. Machado, P. Flores, A new model for dry and lubricated cylindrical joints with clearance in 
spatial flexible multibody systems, Nonlinear Dynamics, 64 (2011) 25-47. 
[9] V.L. Reis, G.B. Daniel, K.L. Cavalca, Dynamic analysis of a lubricated planar slider–crank mechanism 
considering friction and Hertz contact effects, Mechanism and Machine Theory, 74 (2014) 257-273. 
[10] M. Machado, J. Costa, E. Seabra, P. Flores, The effect of the lubricated revolute joint parameters and 
hydrodynamic force models on the dynamic response of planar multibody systems, Nonlinear Dynamics, 69 (2012) 
635-654. 
[11] C. Brutti, G. Coglitore, P.P. Valentini, Modeling 3D revolute joint with clearance and contact stiffness, 
Nonlinear Dynamics, 66 (2011) 531-548. 
[12] I. Khemili, L. Romdhane, Dynamic analysis of a flexible slider–crank mechanism with clearance, European 
Journal of Mechanics-A/Solids, 27 (2008) 882-898. 
[13] S. Mukras, N.H. Kim, N.A. Mauntler, T.L. Schmitz, W.G. Sawyer, Analysis of planar multibody systems with 
revolute joint wear, Wear, 268 (2010) 643-652. 
[14] Z. Zhang, L. Xu, Y.Y. Tay, P. Flores, H. Lankarani, Multi-objective optimization of mechanisms with 
clearances in revolute joints, in:  New Trends in Mechanism and Machine Science, Springer, 2015, pp. 423-433. 
[15] S.M. Varedi, H.M. Daniali, M. Dardel, A. Fathi, Optimal dynamic design of a planar slider-crank mechanism 
with a joint clearance, Mechanism and Machine Theory, 86 (2015) 191-200. 
[16] A. Sardashti, H.M. Daniali, S.M. Varedi, Optimal free-defect synthesis of four-bar linkage with joint clearance 
using PSO algorithm, Meccanica, 48 (2013) 1681-1693. 
[17] S. Erkaya, I. Uzmay, A neural–genetic (NN–GA) approach for optimising mechanisms having joints with 
clearance, Multibody System Dynamics, 20 (2008) 69-83. 

 



S. Ebrahimi et al. / Journal of Theoretical and Applied Vibration and Acoustics 3(1) 41-60(2017) 

60 
 

[18] S. Rahmanian, M.R. Ghazavi, Bifurcation in planar slider–crank mechanism with revolute clearance joint, 
Mechanism and Machine Theory, 91 (2015) 86-101. 
[19] J. Chunmei, Q. Yang, F. Ling, Z. Ling, The non-linear dynamic behavior of an elastic linkage mechanism with 
clearances, Journal of Sound and Vibration, 249 (2002) 213-226. 
[20] A.M. Vaidya, P.M. Padole, A performance evaluation of four bar mechanism considering flexibility of links 
and joints stiffness, Open Mechanical Engineering Journal, 4 (2010) 16-21. 
[21] S. Erkaya, Prediction of vibration characteristics of a planar mechanism having imperfect joints using neural 
network, Journal of Mechanical Science and Technology, 26 (2012) 1419-1430. 
[22] G. Yang, J. Yang, C. Qiang, J. Ge, Q. Chen, Natural frequencies of a cantilever beam and block system with 
clearance while block staying on given position, Journal of Vibration and Control, 19 (2013) 262-275. 
[23] E. Salahshoor, S. Ebrahimi, M. Maasoomi, Nonlinear vibration analysis of mechanical systems with multiple 
joint clearances using the method of multiple scales, Mechanism and Machine Theory, 105 (2016) 495-509. 
[24] P. Flores, H.M. Lankarani, Contact force models for multibody dynamics, Springer International Publishing, 
2016. 
[25] P. Flores, Dynamic analysis of mechanical systems with imperfect kinematic joints, in, University of Minho, 
Braga, Portugal, 2004. 
[26] J.K. Kevorkian, J.D. Cole, Multiple scale and singular perturbation methods, Springer-Verlag New York, 1996. 
[27] A.H. Nayfeh, D.T. Mook, Nonlinear oscillations, John Wiley & Sons, 1995. 
[28] A.F. El-Bassiouny, Structural modal interactions with internal resonances and external excitation, Physica 
Scripta, 72 (2005) 132-141. 
[29] R.J. Schiling, S.L. Harris, Applied numerical methods for engineers using MATLAB, Brooks/Cole Publishing 
Co., Pacific Grove, CA, USA, 2000. 


