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The present article proposes the idea of multi-frequency excitation to harvest 

energy from low-frequency ambient vibrations. A nonlinear 

piezomagnetoelastic set-up, operating in the monostable mode, is 

considered. Due to nonlinearities being present in the system, a multi-

frequency excitation gives rise to complicated phenomena such as 

combination and simultaneous resonances. We propose the idea of multi-

frequency excitation and employing secondary resonances such as 

combination and simultaneous resonances occurring in nonlinear systems. 

Nonlinear differential equations governing the harvester dynamics are 

obtained based on the Hamilton extended principle and solved using the 

direct harmonic balance method. Numerical results are presented for an 

actual energy harvester subjected to a dual-frequency excitation. It is 

ascertained that multi-frequency excitation and exploiting combination and 

simultaneous resonance result in a significant enhancement in the harvester 

output voltage and power. It is also found that simultaneous resonance is 

more effective in improving the harvester performance than combination 

resonances. 
© 2020 Iranian Society of Acoustics and Vibration, All rights reserved. 
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1. Introduction 

Harvesting ambient energy through different mechanisms has attracted significant attention over 

the past few years. Vibrational energy harvesting has been already recognized as a standard way 

to provide the power required for low-power devices such as mobiles and wireless electronics 

[1], data transmitters [2], medical implants[3-5], and many other applications. Some technical 
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problems like wiring complexities are lessened, and also the frequent need for changing batteries 

is removed by using energy harvesting as a power source[6, 7].   

A variety of smart materials have been utilized so far to convert vibrational energy into 

electricity, including piezoelectric, electromagnetic, and electrostatic[8]. Due to their outstanding 

performance and efficiency, piezoelectric materials have been extensively used to capture energy 

from environmental vibrations, and therefore, piezoelectric transducers have received great 

attention [9-11]. 

Initial studies on vibrational energy harvesting were focused on linear systems. The common 

structure for harvesters consists of a cantilever beam with piezoelectric patches attached near its 

clamped end and external environmental excitations applied at the beam base. When the system 

experiences a base excitation, the vibrational energy of the system is harvested through a voltage 

difference across the piezoelectric layers [12]. This mechanism can also be easily implemented 

in practice. The major issue with the linear mechanism is that the fundamental frequency of the 

harvester system should be close to the excitation frequency (i.e., frequency of ambient 

vibration) to generate a considerable response amplitude. Consequently, linear devices offer only 

a narrow frequency bandwidth for energy harvesting. Therefore, tuning a linear energy 

harvesting device to operate near its natural frequency can be very challenging and, in some 

cases, impractical, especially outside the laboratory[13]. Thus, some researchers started to 

implement different methods to resolve this issue. Employing nonlinear phenomena could be a 

way to resolve the bandwidth problem [14]. Considering nonlinearities provides us with the 

opportunity of gaining large amplitude responses in a wider range of frequencies. Consequently, 

many researchers have used nonlinearities as means to enhance the revenue of energy harvesting 

devices under broadband excitations [13, 15]. 

The structure studied in the present paper is a well-known nonlinear structure in which forces 

between magnets are nonlinear. This structure was first studied by Moon and Holmes in 1979 

[16]. They showed that the system can have different numbers of stable points and may exhibit 

different dynamical responses such as chaos and limit cycle oscillations. Later on, Erturk and 

Inman attached piezoelectric layers near the fixed end of the beam to harvest its vibrational 

energy [17]. They also studied the piezomagnetoelastic energy harvester in the monostable mode 

and used multiple scales to determine the system's response at the primary resonance[18]. 

Karami and Inman[19] have used the perturbation method to investigate small-amplitude 

oscillations of the system near its stable equilibrium points. All these studies concentrated on 

only a single frequency excitation around the natural frequency of the system. 

In this paper, we develop a theoretical framework for a piezomagnetoelastic energy harvester 

operating based on multi-frequency excitation. To this end, we assume that the environmental 

vibrations involve two frequencies. In nonlinear systems subjected to multi-frequency 

excitations, new types of resonances referred to as secondary resonances may take place for 

certain values of excitation frequencies. Using secondary resonances, including combination and 

simultaneous resonances, we propose a novel nonlinear harvesting technique to enhance 

harvester performance. The proposed scheme is implemented in the monostable mode. In the 

following, we present the main formulation, and then we use the direct harmonic balance method 

[20] to solve the energy harvesting problem. In addition, different cases of combination 

resonance are compared numerically. Simultaneous resonances are also considered, and output 

voltage and power are determined through several numerical examples. 
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2. Nonlinear modeling and governing equations 

 2.1.Mathematical model 

In this section, we employ the Hamilton extended principle to determine nonlinear initial-

boundary value problem governing the harvester dynamics. Equations are obtained based on 

Euler-Bernoulli beam assumptions and infinitesimal strain theory. The schematic of the 

piezoelectric energy harvester device is illustrated in Fig. 1. The cantilever consists of an 

electrically neutral substrate material with symmetric electroelastic laminates uniformly coated 

on either side such that the neutral axis of the deflection passes through the center of the 

substrate. This configuration is commonly referred to as a bimorph. A tip mass is typically 

secured at the beam-free end to tune the mechanical resonance. Tip mass A, which has magnetic 

properties, is located opposed to two fixed magnets B and C facing each other in such a way that 

identical poles are opposite to each other. The cantilever beam is subjected to a harmonic base 

displacement [16]. The nonlinear magnetic force arising between the magnets leads to  complex 

nonlinear behavior. 

 

 
Fig 1. The schematic of the device 

 
The kinetic energy of the beam without considering piezoelectric layers may be written as: 

 
   

 

 
    ∫   ̇       ̇       

  

 

 (1) 

and for the piezoelectric layers  

 
   

 

 
    ∫   ̇       ̇       

  

 

 (2) 

 

where      denotes the base displacement and        represents the beam deflection. 

Furthermore,   ,   , and    indicate the substrate density, cross-sectional area, and cantilever 

length, respectively. Similarly,   ,   , and    denote the corresponding values for the 

piezoelectric layer. With the point-mass approximation, kinetic energy for the tip mass is 

obtained as: 
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where    indicates the tip mass. The potential energy of the cantilever is given by[21]. 

 
   

 

 
    ∫             

  

 

 (4) 

 
where    is the substrate Young’s modulus and       

   ⁄  is the cross-section second moment 

of area (   is width and    is the thickness of the cantilever). Also, potential energy for the 

piezoelectric patch is given by[22]: 

 

 
       ∫              

 

 
             ̇           

  

 

 

 
    ̇      (5) 

where     is piezoelectric constant and    is Young’s module of the piezoelectric patch. In 

addition,    is the capacitance through one layer, defined as         
     ⁄ . Parameters  , 

  ,   , and    
  indicate electrical flux, the width of the piezoelectric patch, piezoelectric 

thickness, and dielectric constant, respectively. The piezoelectric second moment of area is given 

by: 

 
   

        
           

  

  
 (6) 

The magnetic potential function may also be approximated by the following fourth-order 

polynomial [23]: 

    
 

 
          

  
 

 
          

  (7) 

with   and   being constant coefficients. Then equations (1)-(7) are substituted in the Hamilton 

extended principle to determine the following differential equations governing the cantilever 

vibrations: 
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     ̈    ̇        
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 (8) 

 

Here,    is the deflection of the beam where the piezoelectric layers are attached, and    is the 

deflection of the rest of the beam. Also,   is defined as   
 

 
            . We also note that 

 ̇ is equal to  . In addition,   is the damping coefficient per length. Boundary conditions are also 

obtained as: 
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2.2. Direct Harmonic Balance Method 

 Here, we employ the direct harmonic balance method [20] to solve partial differential equations 

and associated boundary conditions given by Eqs. (8) and (9) without discretization. Due to 

cubic nonlinearity showing up in the boundary conditions, combination resonances occur when 

           , where    is the fundamental frequency of the system and             are 

excitation frequencies [24]. Considering the base excitation includes two frequencies   
                      , where e1 and e2 are amplitudes of excitation, the response is 

assumed to be in the following form 

 

                                                                      
                                         

(10) 
                                                                      

                                         

                                                                      

        
 

 

The response given by Eq. (10) is substituted into governing Eq. (8) and corresponding boundary 

conditions Eq. (9). Separating the coefficient of sin and cos terms yields a set of linear ordinary 

differential equations in terms of spatial variable x and a set of algebraic equations for boundary 

conditions. The response is determined by solving the linear ODE system with the boundary 

conditions,  (for more details, see [20]). 

3. Numerical Results 

For numerical simulations, we use the mechanical and electrical properties of an actual harvester 

device, presented in Table 1 [25]. Depending on the distance between the permanent magnets 

and the cantilever free end, the harvester device might have different numbers of stable points 

and therefore exhibit different nonlinear behavior [16]. Here the distance between the magnets is 
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chosen so that the system has a single stable point. Such a system is called monostable. To obtain 

magnetic potential, we use the same method as Stanton [21]. However, we use two magnets; 

hence, the effect of magnet C on A is also considered. The total potential energy of the system is 

shown in Fig 2. for   = 20 mm and the horizontal distance   = 75 mm. the mechanical and 

electrical properties of the system used in the present investigation [25]. 

Table1. Properties of the harvester device 

Unit Value Parameter 

     200 Es 

     67 Ep 

    127 ls 

    38.1 lp 

    25.4 bs 

   20.574 bp 

    0.254 hs 

    0.254 hp 

    ⁄  7850  
 
 

    ⁄  7800  
 
 

   ⁄  1.5 c 

    0.048 Mt 

    200 R 

T 1.4 Br 

   1.0110
-5 VA 

   2.0410
-6

 VC & VB 

   ⁄  -10.4     

  ⁄  1600 
 
  

  

 

 

  ⁄  8.85410
-12    

 
The magnetic potential function, depicted in Fig. 2, can be approximated with the following 

polynomial function 

                 
                 

          
(11) 

where         signifies the free end deflection of the beam. By differentiating the magnetic 

potential, the applied magnetic force is obtained, and the corresponding coefficients used in the 

last boundary condition (i.e., the nonlinear boundary condition) are also determined. 
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Fig 2. Total potential energy for the monostable harvester 

Utilizing the numerical values tabulated in Table 1, the first natural frequency of the harvester is 

obtained, which is equal to 2.1 Hz. In the present investigation, we consider four different 

excitation schemes for which the combination resonance occurs. As mentioned earlier, the 

combination resonance takes place when the fundamental frequency of the system satisfies 

            . Deflection of the free end, the output voltage, and the harvested power are 

displayed in Fig. 3(a) through 3(c), respectively, for different combination resonance cases. 

Moreover, RMS voltage values are presented in Table 2 for these cases. 

 
As both Fig. 3 and Table 2 imply, distinct excitation schemes lead to significantly different 

harvested power. It is observed that for excitations satisfying           and        
  , the amount of harvested energy is much higher than other two cases (i.e.,           

and          ). It transpires that the highest RMS of the output voltage is obtained when 

the difference of the first excitation frequency and twice the second excitation frequency is equal 

to the fundamental frequency of the system. On the other hand, the lowest RMS voltage occurs 

when the sum of the first excitation frequency and twice the second excitation frequency 

becomes equal to the fundamental frequency.    

 

Table 2. RMS voltages for different cases of combination resonances 

Excitation scheme RMS voltage (v) 

          2.0810 

          0.0176 

          1.9645 

           0.0466 
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(a) 

 

(b) 

 
(c) 

 
Fig 3. A comparison between different cases of combination resonances for excitation amplitudes e1 = 0.4 cm and e2 = 0.1 cm. (a) 

free end deflection (b) voltage and (c) power 

 
Fig 4. The frequency response curve for           for different excitation amplitudes 
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(a) 

 

(b) 

 
(c) 

 
Fig 5. A comparison between combination and simultaneous resonances for excitation amplitudes e1 = 0.4 cm and e2 = 0.1 cm. (a) free end 

deflection (b) voltage, and (c) power 

For a closer examination, we focus on the excitation scheme leading to the highest RMS output 

voltage (i.e.,          ) and plot the frequency-response curve for this case in Fig 4. As 

seen in this figure, the response amplitude increases with excitation amplitudes. In addition, the 

hardening behavior owing to cubic nonlinearity is clearly observed in the figure.  

Next, we consider the excitation scheme with the largest RMS output voltage again, and this 

time we study another type of secondary resonances referred to as the simultaneous resonance. 

The simultaneous resonance occurs when two different resonances arise  simultaneously in the 

nonlinear system. For the system under consideration, the fundamental frequency of the system 

is 2.1 Hz. Therefore, if the first excitation frequency is set to be     6.3 Hz, and the second 



 H. Partovi Aria et al. / Journal of Theoretical and Applied Vibration and Acoustics 6(2) 337-347 (2020) 

346 

 

excitation frequency is set to be     2.1 Hz, then           and hence the combination 

resonance is activated as same as the primary resonance because    equals to the system 

fundamental frequency. Since the primary resonance coincides with a combination resonance, 

the resonance is called the simultaneous resonance. Fig 5 (a)- 5(c) illustrate the response of the 

harvester to excitation schemes leading to combination and simultaneous resonances on the same 

axes. As demonstrated in the figure, in compared to the combination resonance, the simultaneous 

resonance exhibits higher output values of voltage, power, and deflection. Moreover, the RMS 

output voltage corresponding to the simultaneous resonance is determined to be 3.087 v which is 

48.3% higher than that of the combination resonance. 

4. Conclusion 

In this research, a monostable piezomagnetoelastic structure for energy harvesting has been 

studied. We assumed that the system was subjected to a multi-frequency excitation. To solve the 

nonlinear initial-boundary value problem governing the harvester dynamics, a semi-analytical 

solution has been developed based on the direct harmonic balance method. The output voltage 

and harvested power have been determined for various combination resonances and 

simultaneous resonance. The effect of excitation amplitude on the frequency response curve for 

the combination resonance amplitude has also been investigated. In addition, output RMS 

voltages for these cases have been obtained. It was found out that employing nonlinear 

resonance, including combination and simultaneous resonances, may effectively increase the 

amount of harvested energy. Numerical investigations performed for the present harvester 

subjected to various combination resonances demonstrated that employing the convenient 

excitation scheme leads to a significant enhancement in the output voltage and power. In 

addition, for the excitation scheme leading to simultaneous resonance, when both a combination 

resonance and the primary resonance occur simultaneously, the performance improvement is 

quite remarkable.    
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