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An Euler–Bernoulli nanobeam is stabilized using a robust adaptive 

sliding mode control. Using nonlocal strain gradient theory and 

Hamilton’s principle, a nonlinear partial differential equation is 

derived to demonstrate the vibration behavior of the considered 

nanobeam. Moreover, the obtained partial differential equation is 

converted to an ordinary differential equation using the Galerkin 

technique. To suppress the nonlinear vibration of the nanobeam and 

overcome the uncertainties, robust adaptive vibration control is 

designed using an extended Kalman filter and sliding mode control. 

Finally, simulation results show the performance of the designed 

robust adaptive controller. Furthermore, the traditional control 

schemes are used to illustrate the superiority of the proposed 

controller over them. 
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1. Introduction 

Micro/nano-beams have many applications in micro/nano-electromechanical systems, including 

bio-MEMS [1], atomic force microscopes [2], micro-switches [3], micro-actuators [4], micro-

resonators [5], and carbon nanotubes [6]. For instance, micro/nanobeams are used in micro/nano-
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mirror tilts to control the tilt of mirrors [7] and also in printers to increase the speed of printing 

with better quality [8]. Theoretical studies and experimental observations, such as atomistic 

analysis methods and continuum mechanics theory, are used to investigate the mechanical 

behaviors of micro/nanobeams. However, the atomistic methods take a lot of time for analysis, 

and the classical continuum theory is inaccurate for micro/nano-structures since it does not 

consider the additional length scale parameters. Consequently, the non-classical continuum theory 

is commonly used in micro/nano-scale analysis since it is accurate and does not require a long time 

analysis [9]. 

To capture the size-dependent behaviors of the micro/nanobeams, the couple stress theory has been 

introduced as one of the non-classical continuum theories [10, 11]. Also, the strain gradient theory 

has been proposed such that the strain energy is a function of its first derivative and the amount of 

strain [12-14]. Moreover, the nonlocal elasticity theory illustrates that the strains at all points in 

the continuum play important roles in the stress at a point [15]. However, the nonlocal elasticity 

theory does not consider the effect of stiffness enhancement and characterizes only the softening 

effect; thus, the strain gradient theory can be used to handle this issue. Consequently, to precisely 

capture the size-dependent behaviors of the micro/nanobeams, a combination of the nonlocal 

elasticity theory [15] and the strain gradient theory [16] has been proposed as the nonlocal strain 

gradient theory [17]. 

Large transverse loads cause a nonlinear vibration behavior for the micro/nanobeams with axially 

immovable ends since an axial tension is generated; however, the immovable ends keep the strains 

small. Recently, many researchers have studied the nonlinear static and vibration behavior of the 

micro/nanobeams [5, 18, 19]. To prevent the micro/nanobeams from damage, one can use vibration 

control strategies, which can improve the performance and resolution of the system. However, the 

micro/nanobeam models usually include model uncertainties due to imperfect measurement; 

therefore, robust adaptive control schemes are useful to enhance accuracy. The popular approaches 

for estimation and stabilization are respectively the extended Kalman filter (EKF) algorithm [20-

22] and the sliding mode control (SMC) [23-26] which help us reduce the tracking error for the 

nonlinear systems with model uncertainty. Ayati et al. [27] employed the EKF algorithm to 

estimate the state and parameters of a nonlinear chaotic system. Moreover, the EKF has been 

employed to estimate the state of the non-classical microcantilevers by Vatankhah et al. [28]. 

In this work, a robust adaptive vibration control strategy is developed to suppress the nonlinear 

vibrations of nanobeams. The Galerkin technique is utilized to convert the governing nonlinear 

partial differential equation to the nonlinear ordinary differential equation with cubic nonlinearity. 

The SMC is used to stabilize the nonlinear vibrations of the nanobeams, and the stability of the 

closed-loop system is proved using the Lyapunov stability theorem. Moreover, the EKF is 

employed to estimate the states of the system using the noisy output. Finally, simulation results 

are shown to verify the performance of the developed controller for stabilizing the nonlinear 

vibrations of nanobeams. 

The paper is organized as follows. In Section 2, a mathematical model is presented for an Euler-

Bernoulli nonlocal strain gradient nanobeam under a centralized force in the middle of the beam. 

Section 3 outlines the design of SMC and the EKF algorithm is presented for uncertain nanobeams. 

Section 4 provides numerical simulations that prove the proposed control scheme is successful in 

stabilizing the nonlinear vibration of nanobeam. The conclusions are drawn in Section 5.  
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2. System model and mathematical formulation 

For an isotropic linear elastic material, the strain energy (U) is considered using the nonlocal strain 

gradient theory via the following correlation [17]: 

 (1)1
( )

2
xx xx xx xx

V

U dV   = +   
(1) 

where 𝜀𝑥𝑥, 𝜎𝑥𝑥, and (1)

xx  indicate the normal strain, the classical stress, and the higher-order stress, 

respectively. Also, the one-dimensional differential operator is represented by 𝛻  which is 𝜕/𝜕𝑥. 

The components of 𝜎𝑥𝑥 and (1)

xx  are expressed as follows. 

 
0 0

0

( , , ) ( )

L

xx xxE x x e a x dx     =   (2) 

 
(1) 2

1 1 ,

0

( , , ) ( )

L

xx m xx xl E x x e a x dx     =   (3) 

 (1)

xx xx xxt  = −  (4) 

where 𝐸, 𝛼0, 𝛼1, and 𝐿 respectively stand for Young’s modulus, the nonlocal effects, and the length 

of the nanobeam. In addition, the effects of the nonlocal elastic stress field are expressed by 𝑒0𝑎 

and 𝑒1𝑎. Moreover, the effect of strain gradient is represented by 𝑙𝑚. Consequently, the general 

nonlocal strain gradient constitutive equation is obtained as [17] 

 2 2 2 2 2 2 2 2 2 2

0 1 1 01 ( ) 1 ( ) 1 ( ) 1 ( )xx xx m xxe a e a t E e a E l e a        −  −  = −  − −           
(5) 

 

where 2 2 2x =     is the Laplacian operator.  If 
0 1e e e= = , Eq. (5) is rewritten as: 

 2 2 2 21 ( ) (1 )xx m xxe a t E l  −  = −    
(6) 

Supposing 0ml =  results in nonlocal elasticity theory as [15] 

 2 21 ( ) xx xxe a t E −  =   
(7) 

Also, considering 0ea =  results in strain gradient theory as [16] 

 2 2(1 )xx m xxt E l = −   
(8) 

 

The structure of a hinged–hinged Euler–Bernoulli nanobeams is illustrated in Figure 1, and the 

displacement components are given as 
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1

2

3

( , )
( , , ) ( , )

( , , ) 0

( , , ) ( , )

w x t
u x z t u x t z

x

u x z t

u x z t w x t


= −



=

=

 
(9) 

 

where the displacements along the x, y, and z axes are represented by 𝑢𝑥, 𝑢𝑦 , and 𝑢𝑍, respectively. 

𝑤 and 𝑢 are the transverse and axial deflections, 𝑡 and 𝑥 denote the independent time and spatial 

variables, and 𝜕𝑤/𝜕𝑥 represents the angle of rotation of the beam cross-section (about the y-axis). 

The Von-Karman’s nonlinear strain relationship is obtained by assuming a large deflection and 

small slope for a straight Euler–Bernoulli nanobeam as follows 

 2
2

2

( , ) 1 ( , ) ( , )
( )

2
xx

u x t w x t w x t
z

x x x


  
= + −

  
 (10) 

 

where 𝜀𝑥𝑥 denotes the longitudinal strain. The first variation of strain energy is given by 

 
(1)

0 0

( )

t t

xx xx xx xx

V

U dt dV dt    = +     (11) 

 

where Eq. (11) can be rewritten as follows 

 
(1) (1)

0 0 0 0

(1)

0 0 0

( )

( )

L
t t t

xx xx xx xx xx xx

V A

L
t t

xx xx xx xx

V A

U dt dV dt dA dt

t dV dt dA dt

      

  

 
= − +  

 

 
= +  

 

    

   

 (12) 

where A is the cross-sectional area. The following resultant stress is defined as: 

 (1) (1), , ,c xx c xx nc xx nc xx

A A A A

N t dA M z t dA N dA M z dA = = = =     (13) 

where 𝑴𝒄 and 𝑵𝒄 are respectively the classical normal moment and force. Also, 𝑴𝒏𝒄 and 𝑵𝒏𝒄 

indicate the non-classical ones. Substituting Eqs. (10) and (13) into Eq. (12) results in   
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Fig. (1) A hinged-hinged nanobeam. 

 2

2

0 0 0

2

2

0 0

( )

( )

t t L

c c

L
t

nc nc

u w w w
U dt N M dx dt

x x x x

u w w w
N M dt

x x x x

  


  

    
= + − 

    

    
+ + − 

    

  



 (14) 

 

Also, for the work, which is generated by the applied external forces, one has  

 

0 0

( )

t t

L

W dt f u q w dx dt  = +  
 

(15) 

where 𝑓 and 𝑞 are the distributed axial and transverse loads.  

Now, the first variation of kinetic energy is given as 

 

0 0 0

( )

t t L

e A

u u w w
K dt I dx dt

t t t t

 


   
= +

       (16) 

where, 

 31

12
AI bh=  (17) 

Now, the general form of Hamilton’s principle is given by 

 
 

0

( ) 0

t

eK U W dt − − =  (18) 

Using Eq. (18) and separating the coefficients of 𝛿𝑢 and 𝛿𝑤, the governing equation of the system 

is obtained as follows 
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 2

2

2 2

2 2

( , )

( ) ( , )

c
A

c
c A

N u
u f x t I

x t

M w w
w N q x t I

x x x t





 
 + =

 

   
 + + =

   

 (19) 

where the corresponding boundary conditions are 

 

2 2

2 2

0 0

0 0

0 0

0 0

0 0

c

nc

c
c

c nc

nc

u N or u

u u
N or

x x

M w
w N or w

x x

w w w
M N or

x x x

w w
M or

x x











 = =

 
 = =

 

 
 + = =

 

  
 − = =

  

 
 = =

 

 (20) 

 

Now, Eq. (6) is developed for the nanobeam using the nonlocal strain gradient theory as follows 

2 2 3 3 2 4
2 2 2 2

2 2 3 3 2 4

1
( ) ( ) ( )

2

xx
xx m

t u w w u w w w w
t e a E z E l z

x x x x x x x x x

           
− = + − − + + −   

           

 (21) 

According to Eqs. (13) and (21), one has  

 2 3 3 2
2 2 2 2

2 3 3 2

2 2 4
2 2

2 2 4

1
( ) ( ) ( )

2

( )

c
c xx xx m

c
c xx xx m

N u w u w w w
N e a A A l

x x x x x x x

M w w
M e a D D l

x x x

        
− = + − + +           

  
− = − +

  

 (22) 

Where 

 2( , ) (1, ) , 0xx xx xx

A A

A D E z dA B E z dA= = =   (23) 

Now, using Eq. (19), substituting cN

x




 and 

2

2

cM

x




 into Eq. (22) yields 

 3 3 2 3
2 2 2 2

3 3 2 2

2 4 2
2 2

2 4 2

1
( ) ( ) ( ) ( )

2

( ) ( )

c xx xx m A

c xx xx m A c

u w u w w w u f
N A A l e a I

x x x x x x t x x

w w w w
M D D l e a I N q

x x t x x

         
= + − + + + −             

     
= − + + − − 

     

 
(24) 
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Moreover, substituting Eq.(19) in Eq.(24) yields  

 3 3 2
2 2 2 2

3 3 2

2 2 2
2 2

2 2 2

6 4 3
2 2

6 4 3

2 2
2

2 2

( ) ( ( ) )
2

( ) ( )

( ) ( ) ( )

( )

xx
xx xx m xx m

A

xx m xx c c

A

Au w u w w w
A A l A l

x x x x x x x

u f
I e a u e a f

t x x

w w w w
D l D N e a N

x x x x x x

w
I e a

t x

          
+ − + +             

   
+ − = − 

   

     
− + −

     

 
+ −

 

2
2

2
( )

q
w e a q

x

  
= − 

 

 (25) 

Considering the negligible rotational inertia of the beam, the governing equation, which is a 

function of u  and its derivatives, is expressed as 

 3 3 2
2 2 2 2

3 3 2
( ) ( ( ) ) ( ) 0

2

xx
xx xx m xx m c

Au w u w w w
A A l A l N

x x x x x x x x

           
+ − + + = =              

 (26) 

 

According to Eq. (26), it can be concluded that 
cN  remains unchanged. Integrating both sides of 

Eq. (26), the following equation is derived. 

 3 3 2
2 2 2 2

3 3 2

1
( ) ( ( ) )

2
m m

xx

u w u w w w C
l l

x x x x x x A

     
+ − − + =

     
 

(27) 

 where C  is a constant parameter. The boundary condition for the hinged-hinged beam is defined 

as 

 2 2

2 2

(0, ) ( , )
(0, ) ( , ) 0

u t u L t
u t u L t

x x

 
= = = =

 
 (28) 

According to Eq. (28), the strain gradient theory [16] and the boundary conditions, one can reach 

the following equation by integrating both sides of (27) over the beam length (𝑥 = 0 𝑡𝑜 𝑥 = 𝐿). 

 
 

2 2
2

2 2

3 2
2 2 2

3 2

0 0

( , ) (0, )
( , ) (0, )

1
( ) ( ( ) )

2

m

xx

L L

m

C L u L t u t
u L t u t l

A x x

w w w w
dx l dx

x x x x

  
= − − − 

  

   
+ − +

    

 
(29) 

Hence 
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 

2 2
2

2 2

3 2
2 2 2

3 2

0 0

( , ) (0, )
( , ) (0, )

1
( ) ( ( ) )

2

m

xx

L L

m

C L u L t u t
u L t u t l

A x x

w w w w
dx l dx

x x x x

  
= − − − 

  

   
+ − +

    
 

(30) 

 2 3 2
2 2

3 2

0 0

( ) ( ( ) )
2

L L

xx xx m
c

A A lw w w w
N dx dx

L x L x x x

   
= − +

      (31) 

Now, substituting Eq. (31) into Eq. (25) yields the governing equation of the nonlocal strain 

gradient nanobeam as follows [9] 

 26 4 3 2
2 2 2

6 4 3 2

0 0

2 4 2 2 2
2 2 2

2 4 2 2 2

( ) ( ( ) )
2

( ) ( ) ( )

L L

xx xx m
xx m xx

A

A A lw w w w w w
D l D dx dx

x x L x L x x x

w w w q
e a I e a w e a q

x x t x x

      
− + − +  

      

       
− + − = −   

       

 
 (32) 

The following non-dimensional quantities are introduced in order to develop the dimensionless 

form of the equation (32) 

 

4
, , , , , mlx w z E I e a

x w z t t
L r h AL L L

 


= = = = = =  
(33) 

where r I A= . Therefore, the dimensionless governing equation is obtained as follows 

 1 16 4 3 2 2
2 2 2 2

6 4 3 2 2

0 0

1 12 3 2 4
2 2 2 2

3 2 4

0 0

4 2 2
2 2

2 2 2 2

( ) ( ( ) )
2

( ) ( ( ) )
2

xx
xx xx xx

xx
xx

A A

Aw w w w w w w
D D dx A dx

x x x x x x x

A w w w w w
dx A dx

x x x x x

w w q
I I q

x t t x

 


 

 

       
− + − + 

       

     
− − + 

     

  
+ − = −

   

 

   
(34) 

Where 

 1, 1, 1xx xx AA D I= = =  
(35) 

Herein, through the Galerkin approach, the obtained partial differential equation is converted to 

the nonlinear ordinary differential equation. To this end, we decompose the temporal and spatial 

terms of 𝑤̅(𝑥̅, 𝑡)̅ as follows [29] 
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 ( , ) ( ) ( )

( ) sin ( )

w x t Q t x

x x



 

=

=
 

(36) 

where ( )Q t stands for the unknown temporal part of the transverse deflection, and ( )x  indicates 

the spatial part and satisfies the boundary conditions of the hinged-hinged nanobeam. Also, the 

concentrated force ( , )q x t  is given by   

 

( ) ( 1)

1
( , ) ( ) ( )

2

( ) ( ) ( ), ( ) ( ) ( )

a a a

n n

a a a

q x t q t x

f
f x x a dx f a f x x a dx x a dx

x

  

  



  

+ + +

−

− − −

= −


− = − = − −

  
 (37) 

Substituting Eqs. (36) and (37) in Eq. (34), multiplying both sides of Eq. (34) by ( )x , and 

integrating over the beam length, the ODE will be obtained as follows 

 3 2 2

1 2( ) ( ) ( ) ( 1) ( )Q t K Q t K Q t q t + + = − +  
(38) 

where the coefficients 
1K  and 

2K  are given by 

 1 1

2 (6) (4)

0 0
1 1 1

2 2

0 0

( )

xx xxD dx D dx

K

dx dx

    

   

−

=

 −

 

 

 (39) 

 1 1 1 1 1 1

2 2 2 2

0 0 0 0 0 0
2 1 1

2 2

0 0

1 1 1 1 1 12
2 (4) 2 2 (4) 2 2 2 (4)

0 0 0 0 0 0

2

( ) . . ( ) .
2

( )

( ) . . ( ) .
2

xx
xx xx

xx
xx xx

A
dx dx A dx dx A dx dx

K

dx dx

A
dx dx A dx dx A dx dx

dx

           

   


             

  

      − −

= −

 −

   − −

−

 −

     

 

     
1 1

2

0 0

( ) dx 

 (40) 

 

where (4)  and (6)  are respectively fourth and sixth derivatives of   with respect to time, and   

is its first derivative with respect to x . 

 

3. Control design 

Herein, we propose a robust adaptive SMC to suppress the nonlinear forced vibration of the 

hinged–hinged nanobeam. Evidently, in micro/nano-systems, the existence of uncertainties is 
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undeniable. Hence, implementing a robust controller for such systems is of crucial necessity. To 

design a robust controller, we consider the following uncertain parameters for the system as 

follows  

 
1min 1 1max

2min 2 2max

min max

K K K

K K K

b b b

 

 

 

 (41) 

The state-space equation of the system is  

 
1 1 2

1 2

3

2 1 1 2 1

( ) , ( )

( ) ( )

Q t x Q t x x

x x

x K x K x b q t

= = =

=


= − − −

 (42) 

3.1. Robust adaptive SMC 

Now, we design a second-order sliding surface as  

 1( )nd
S e

dt
 −= +  (43) 

where 0  , and (
𝑑

𝑑𝑡
+ 𝜆)𝑛−1 𝑒 is a Routh-Hurwitz equation of error 𝑒, which satisfies the 

stability of the system when it is on the sliding surface.  

For the uncertain nonlinear system (42), the robust SMC is designed as 

 
equ u v= +  (44) 

where equ  is obtained for 0s =  and is equal to 

 3

2 1 1 2 1

3

2 1 1 2 1

0

ˆ ˆ

ˆ

eq

eq

s x K x K x bu

x K x K x
u

b





= − − − =

− −
 =

 (45) 

and v  is obtained for ss s −  and 0   as 

 3

2 1 1 2 1

3

2 1 1 1 2 2 1

3max maxmin
2 1 1 min 1 2 2 min 1 min

( )

ˆ ˆ(1 ) ( ) ( )
ˆ ˆ ˆ

ˆ ˆ(1 ) ( ) ( )
ˆ ˆ ˆ

V ss s x K x K x bu s

b b b
s x s K K x s K K x sbv

b b b

b bb
s x s K K x s K K x sb v s

b b b

 



 

= = − − −  −

 − + − + − −

 − + − + − −  −

 
(46) 

Thus, for K  , one has 
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3max maxmin

2 1 1min 1 2 2min 1

min

1 ˆ ˆ(1 ) ( ) ( ) ( )
ˆ ˆ ˆ

b bb
v x K K x K K x K sign S

b b b b

 

= − + − + − + 
 

 (47) 

The designed control approach suffers from the chattering caused by the discontinuous function 

(.)sign ; thus, the following (.)Sat  function is used to handle this issue as 

 (s)

( )

sign s
s

Sat s
s



 


 


= 




 (48) 

where   is the boundary layer thickness. Therefore, considering 1 = , the control law is 

 

3

2 1 1 2 1

3max maxmin
2 1 1min 1 2 2min 1

min

ˆ ˆ ( )

ˆ

1 ˆ ˆ(1 ) ( ) ( ) ( )
ˆ ˆ ˆ

eq cu u u

x K x K x

b

b bb s
x K K x K K x K Sat

b b b b 

= +

− + +
=

 
+ − + − + − + 

 

 
(49) 

3.2. Extended Kalman filter 

Accurate information about the states of the system is necessary for designing a controller; 

however, we may not be able to measure the states in some applications. Hence, in the current 

study, the extended Kalman filter (EKF) is implemented to approximate the state of the system. 

The discrete form of the considered system is given as 

 
( ) ( 1)

1( ) 1( 1) 2( 1) 1( 1)

3

2( ) 2( 1) 1 1( 1) 2 1( 1) ( 1) 2( 1)

( 1) 1( 1) ( 1)

( )

k k

s

k k s k k

k k s k k k k

k k k

x x
x

T

x x T x w

x x T K x K x bu w

y x v

−

− − −

− − − − −

− − −

−
=

= + +


= + − − − +

= +

 
(50) 

The measurement and process noises are considered as white noises with zero mean value, and 

covariance matrices 𝑅 and 𝑄 are as follows  

 2

2

2

0

0

q
Q

q

R r

 
=  
 

=

 (51) 

where 𝑞=r=0.01. The generalized discrete dynamic state model is expressed as 

 ( ) ( 1) ( 1)

( ) ( 1) ( 1)

( )

( )

k k k

k k k

x f x w

y h x v

− −

− −

= +

= +
 (52) 
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where 𝑤 and 𝑣 respectively denote the process and measurement noise vectors, and the output of 

the system is represented by 𝑦. First, in the prediction process, a prediction of the covariance matrix 

and the states are obtained based on the previous states as 

 
( 1) ( 1 1)

( 1) ( 1) ( 1)( 1) ( 1 1)

ˆ ˆ( )
k k k k

T

k k kk k k k

x f x

P F P F Q

− − −

− − −− − −

=

= +
 (53) 

where 𝑥̂(𝑘|𝑘−1) denotes the estimated state at time 𝑘 based on the previous data. Also, 𝑃(𝑘|𝑘−1) and 

𝑓 indicate the prediction error covariance matrix and the state transition function, respectively. 

Then, in the second step, the covariance matrix and predicted states would be corrected, and the 

following recursive relations present this process as 

 

 
( ) ( ) ( 1)

( ) ( ) ( ) ( )( 1)

1

( ) ( ) ( )( 1)

( ) ( )( ) ( 1)

( ) ( ) ( )( ) ( 1)

ˆ( )

ˆ ˆ

k k k k

T

k k k kk k

T

k k kk k

k kk k k k

T

k k kk k k k

B y h x

S H P H R

K P H S

x x K B

P P K S K

−

−

−

−

−

−

= −

= +

=

= +

= −

 
(54) 

where 𝐾, 𝐵, and 𝑆 denote the estimation gains. Also, 𝐹 and 𝐻 are the Jacobian matrices of the 

system which can be obtained as follows 

 
( )

( 1)

ˆ( ) ,

ˆ( ) ,

( )

( )

k k

k k

i
k x xi j

j

i
k x xi j

j

f x
F

x

h x
H

x −

=

=


  =  


  =  

 (55) 

4. Numerical Simulations 

In this section, the numerical simulation for the stabilization of the nanobeam is demonstrated 

using the proposed robust adaptive sliding mode control. For numerical simulations, the 

parameters of the nonlocal strain gradient nanobeam are considered as 0.1 = = ; consequently, 

the exact value of appeared parameters in (38) is obtained as 
1 97.4K = , 

2 19.97K = − , and 

1.09b = . To consider the model uncertainty for the nanobeam models, we consider the following 

uncertainty ranges for the parameters as 

 ^

1 1

^

2 2

97.4, 90 100

19.97, 20 19

ˆ 1.09, 1 1.1

K K

K K

b b

=  

= − −   −

=  

 (56) 
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(a) (b) 

Fig. (2) Vibration suppression using robust adaptive SMC for 𝑥1(0) = 1, 𝑥2(0) = 5 : (a) the trajectory in the 

phase plane. (b) the states of the system. 

Also, the design parameter of the controller is considered as 1K = . Figures. 1 to 5 show the results 

for the stabilization of the nanobeam based on the proposed control technique with different initial 

conditions. As it is shown in these figures, the proposed robust adaptive controller, which is 

equipped with the EKF, could appropriately deal with uncertainties and unexpected noises. These 

results conspicuously confirm that the system reaches the slide surface after a short period of time 

and then the states of the system reach their desired values using the suggested controller.  

  
(a) (b) 

Fig. (3) Vibration suppression using robust adaptive SMC for 𝑥1(0) = −1, 𝑥2(0) = −5: (a) the trajectory in the 

phase plane. (b) the states of the system. 
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(a) (b) 

Fig. (4) Vibration suppression using robust adaptive SMC for 𝑥1(0) = −1, 𝑥2(0) = 5 :(a) the trajectory in the 

phase plane. (b) the states of the system. 

 
 

  
(a) (b) 

Fig. (5) Vibration suppression using robust adaptive SMC for  𝑥1(0) = 1, 𝑥2(0) = −5   (a) the trajectory in the 

phase plane. (b) the states of the system. 

 

 
Fig. (6) Time history of deflection of the nanobeam  using the proposed controller. 
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Figure 6 shows the time history of the deflection of the nanobeam using the proposed control 

scheme, where the nanobeam is completely stabilized after 6 time units. In Figure 7, the 

performance of the controller for stabilizing the system is depicted for 1 2(0) 5, (0) 15x x= = . In this 

figure, the estimated states of the system are shown as well. To verify the benefits of the proposed 

control technique, its performance is compared with a PID controller with 10pk = , 0.1ik = , and 

15dk = . Figures 8 and 9 show the results of the stabilization of the nanobeam using the proposed 

control technique and the PID controller, which verifies the effectiveness of the proposed robust 

adaptive controller. In summary, the numerical simulations vividly illustrate the performance of 

the proposed control scheme in different initial conditions for stabilization of the nanobeam when 

there exist unexpected noises and uncertainties. 

  
(a) (b) 

Fig. (7) Time history of states of the system and the estimated states. 

 

  
(a) (b) 

Fig. (8) Time history of states of the system using SMC and PID. 
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Fig. (9) Control input using SMC and PID. 

5. Conclusion 

Using Hamilton’s principle and the Galerkin approach, a nonlinear ordinary differential equation 

was derived to study the vibration control of nonlocal strain gradient nanobeams. The robust 

adaptive SMC was designed to suppress the nonlinear vibration of the nanobeam, which was 

equipped with the EKF to make it robust against uncertainties and noises due to the lack of accurate 

information as well as unexpected noises which are prevalent cases in micro/nano-structures. The 

proof of the stability of the closed-loop system was conducted through the Lyapunov stability 

theory. Moreover, to illustrate the performance of the suggested control scheme, the numerical 

simulation results were presented for various initial states. To provide an insight for future work 

analysis, a data-based vibration analysis is developed for the micro/nanobeams using the neural 

network [30-34]. Furthermore, using [35-37], a finite-time learning approach is proposed to 

develop a data-based vibration control for the micro/nanobeams. Finally, using  [38, 39], a data-

based optimal vibration control is proposed for the micro/nanobeams. 
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