
 Journal of Theoretical and Applied Vibration and Acoustics 3(2) 165-198 (2017) 

 
I  S  A  V 

 

 

Journal of Theoretical and Applied 

Vibration and Acoustics 

 
journal homepage: http://tava.isav.ir 

 
   

Free vibration and wave propagation of thick plates using the 
generalized nonlocal strain gradient theory 

Seyed Mohammad Hossein Goushegira*, Shirko Faroughia 

a Faculty of Mechanical Engineering, Urmia University of Technology, Urmia, Iran 
 

 

A R T I C L E   I N F O 

  

 

A B S T R A C T 

Article history: 
Received 3 August 2017 

Received in revised form 
9 December 2017 

Accepted 23 December 2017 

Available online 27 December 
2017 

In this paper, a size-dependent first-order shear deformation plate 
model is formulated in the framework of the higher-order 
generalized nonlocal strain-gradient (GNSG) theory. This model 
employs two nonlocal parameters and a strain-gradient coefficient to 
capture the both higher-order nonlocal stress-gradient and strain-
gradient effects in nanostructures. The presence of these different 
scale parameters renders a unified model, which is able to predict 
both increase and reduction of stiffness in nanoplates. The governing 
equations are developed for free vibration of first-order shear 
deformation plates using Ritz method. The dispersion relations for 
the GNSG plate model is also derived. Several numerical examples 
are studied to show the efficiency, competence and accuracy of the 
proposed model. To ensure the applicability of the presented GNSG 
plate model, the results are compared with the experimental data 
available in the scientific literature. It is found that the effects of 
scale parameters on the wave frequencies are significant at high 
wavenumbers and ratio of any pair of these parameters is the main 
criterion for the correct study of size effects. The results show that 
the reduced nonlocal strain-gradient (RNSG) model and the GNSG 
model diverge in higher vibration modes. 
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1. Introduction 
One of the challenges in nanotechnology is development and testing of nanostructures. Nano-
scale materials such as graphene sheets are used in new sensors’ design, gas detection and 
composite materials. This is due to their prominent mechanical, electronic and thermal properties 
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(Ruud et al.[1]). Hence, studying graphene sheets is a key factor for researchers. Since the 
experiments at nano scales are difficult to conduct, the development of mathematical models and 
optimized solutions is an effective alternative. Generally three approaches have been used in the 
literature to analyze nanostructures, including: (a) atomistic modeling (Ball[2], Baughman et 
al.[3]), (b) hybrid atomistic–continuum mechanics (Bodily and Sun[4], Li and Chu [5]) and (c) 
continuum mechanics. Atomistic modeling and hybrid atomistic–continuum mechanics such as 
molecular dynamics (MD) (Liu and Wang[6]), molecular structural mechanics (MSM) (Shi and 
Zhao[7]) and density functional theory (Andres et al.[8]) are computationally expensive and can 
be applied only to a few atoms (or molecules), consequently continuum mechanics is widely 
used by researchers. The mechanical behavior of structures at nano scales is very different from 
their characteristics at large scales. Thus, instead of using classical continuum theory, which is 
not capable of predicting the effects of small scales in material, size-dependent continuum 
theories must be employed. The significant influence of the scale factors on the static and 
dynamic analysis of nanostructures is due to the fact that the lattice spacing between atoms is not 
negligible and the interatomic interactions in materials have a noticeable influence on the 
mechanical performance of nanostructures. 

The nonlocal continuum field theory is originally developed by Eringen [9-11]. It is considered 
to be one the most popular non-classical theory in the research community. In this theory, the 
stress at a point ( x ) in a continuous domain is affected by both the strain tensor at that point and 
all other points of the body ( x ). This nonlocal effect attenuates by a kernel function as the 
distance between the point ( x ) and the other points ( x ) increases. Both experiment and 
molecular dynamics can determine a nonlocal parameter in this theory (Duan et al. [12], Wang et 
al.[13], Huang et al.[14], Liang and Han[15]). In fact, classical continuum theory can be 
transformed into differential-type nonlocal continuum theory by injecting a nonlocal parameter 
into the constitutive equations. For a special case of kernel function, the integral-type nonlocal 
elasticity (Pisano and Fuschi[16]) reduced to the Eringen’s differential-type nonlocal elasticity 
Eringen [10]), which is extensively used in the literature due to its simplicity. 

In the past researches, the differential-type nonlocal model has been widely used for bending, 
buckling and vibration analysis of nanoplates and nanobeams (Duan and Wang[17], Lu et al. 
[18], Aghababaei and Reddy [19], Thai [20]). Murmu and Pradhan[21] and Faroughi and 
Goushegir [22] have in  vestigated the effect of small scales on the free in-plane vibration of 
homogeneous and heterogeneous nanoplates. Numerous applications of differential-type 
nonlocal continuum theory exist for investigating the dispersion of waves in carbon nano-tubes 
(CNTs) and graphene sheets (e.g., Wang et al.[23], Wang and Hu[24], Wang et al. [25]). 
According to these studies, the nonlocal size-dependent effect potentially has a fundamental role 
in studying the static and dynamic behavior of small-scale structures. The size-dependency of 
small-scale structures are not always accurately predictable by Eringen’s nonlocal theory due to 
its limited capability of identifying size-dependent stiffness (Eltaher et al. [26], Lim et al. [27], 
Ma et al.[28]). For instance, the well-known paradoxical nonlocal cantilever beam problem has 
been studied by some researchers (Challamel & Wang[29], Challamel et al. [30], Wang et 
al.[31]) and an unreasonable stiffening effect was observed in their results for bending and free 
vibration of cantilever nanobeams. Likewise, the stiffness enhancement effects reported in 
experimental observations and the modified strain-gradient theory (Lam et al.[32]) are not well 
predictable by employing the Eringen’s nonlocal elasticity model.  
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The equations of classical elasticity with additional higher-order strain-gradient terms are 
expanded by the gradient elasticity theories (Aifantis [33]). This is based on the hypothesis that 
the materials have to be considered as atoms with higher-order deformation mechanisms at 
micro- or nano scale and cannot be modeled as a set of points (Lim et al. [27]). In this theory, 
additional strain-gradient terms must be considered through the stress field. The gradient 
elasticity theory has been improved by Yang et al. [34]. The improved gradient elasticity theory 
states that the strain energy density should be defined as a function of both strain tensor and 
curvature tensor. These tensors conjugated with stress and couple stress tensors. Recently, the 
gradient elasticity theories has been extensively employed in the theoretical analysis of 
micro/nano- structures including bending, vibration and buckling of functionally graded beams 
(Reddy[35]), CNTs (Askes and Aifantis[36]), microtubules (Akgöz and Civalek [37]), 
rectangular nanoplates (Xu et al.[38]) and functionally graded microplates (Nguyen et al.[39]). 
The free vibration analysis of a functionally graded piezoelectric micro-scaled plate was 
implemented by Li and Pan [40] through the modified couple stress theory. In all of the above-
mentioned references, a stiffness enhancement effect have been reported for these gradient 
elasticity models. 

As discussed above, obviously two quite different size-dependent mechanical characteristics of 
materials at small scales are explained by the Eringen’s differential-type nonlocal model and 
strain-gradient models. Recently Lim et al.[27] introduced a higher-order nonlocal strain-
gradient theory that involves both of the scale parameters into a unified theory. Their goal was to 
determine the precise effects of the two scale parameters on the structural responses. Both the 
non-gradient nonlocal elastic stress field (Eringen’s nonlocal model) and the nonlocal stress field 
of higher-order strain gradients are included in the stress tensor of the nonlocal strain-gradient 
theory. The nonlocal strain-gradient model contains two types of independent scale parameters 
including: material length scale parameter (strain-gradient parameter) and the nonlocal 
parameter. In recent years, many different scientific research have been done based on the 
higher-order strain-gradient theory introduced by Lim et al.[27] and their results were desirable. 
The nonlocal strain-gradient theory for beam-type structures provides an excellent matching with 
dispersion relations calculated by molecular dynamics simulations (e.g., Li and Hu[41], Li et 
al[42]. , Lim et al.[27]). Li and Hu[43] investigated the buckling of size-dependent nonlinear 
beams. Also a closed-form solution to the dispersion relations of wave propagation in fluid-
conveying viscoelastic carbon nanotubes was developed by them (Li and Hu[41]). A higher-
order nonlocal strain-gradient plate model for buckling of orthotropic nanoplates in a thermal 
environment has been developed by Farajpour et al. [44]. Li et al. [45] have analyzed the 
flexural wave propagation in small-scaled functionally graded beams. Li et al.[46] studied the 
free vibration of functionally graded nonlocal strain-gradient Timoshenko beams. Wave 
propagation in temperature- dependent inhomogeneous nanoplate was investigated by Ebrahimi 
et al. [47]. 

In this study, a size-dependent first-order shear deformation plate model is developed in the 
framework of generalized nonlocal strain-gradient (GNSG) theory. This theory is employed to 
investigate the free vibration and wave propagation of thick nanoplates. Two kinds of scale 
parameters, namely, the nonlocal parameters and the strain-gradient parameter are introduced to 
capture the size effects of materials in nanostructures. Then the GNSG model is used to illustrate 
both the increase and decrease of structural stiffness depending on the relative magnitudes for 
any pair of scale parameters. In the present analysis, the results obtained from the GNSG theory 
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are considered as the reference quantity in order to perform error analysis among the size-
dependent continuum theories. Therefore, the classical continuum theory (CLT), pure nonlocal 
theory (PNL) and pure strain-gradient theory (PSG) are also investigated according to the GNSG 
theory and the relative errors are demonstrated efficiently for several types of boundary 
conditions, plate thicknesses and aspect ratios. The generalized eigenvalue problem for the free 
vibration of nanoplates is obtained by using a reliable and computationally efficient Ritz method 
based on boundary characteristic orthogonal polynomials (BCOPs). These polynomials have 
been generated through the Gram–Schmidt orthogonalization process. The advantage of these 
polynomials is that some of the entries of stiffness and mass matrices in the generalized 
eigenvalue problem become either zero or one due to the orthonormality of the assumed trial 
functions (Faroughi et al.[48]). The Ritz method has been extensively used in the vibration of 
nanoplates (e.g. Faroughi and Goushegir [22], Behera and Chakraverty [49], Behera and 
Chakraverty [50], Chakraverty and Behera [51]). A comprehensive analysis has been given on 
the dispersion relations of the wave propagation in GNSG plate model. Moreover, the effect of 
nonlocal parameters and the strain-gradient parameter on the dispersion relations of wave 
frequency, phase velocity and group velocity is demonstrated. Finally, the fronts of a single 
solitary flexural wave is illustrated for different types of size-dependent continuum theories as 
well as the GNSG theory. 

2. Generalized higher-order nonlocal strain-gradient theory 
According to the higher-order nonlocal strain-gradient theory developed by Lim et al. [27], the 
strain energy potential (U) is expressed as: 
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where ijklC , ij  and ,ij m  are the fourth-order elasticity tensor, strain tensor and first-order strain 
gradient, respectively. The strain-gradient parameter ( l ) is incorporated to characterize the 
significance of strain-gradient field and the nonlocal parameters 0e   and 1e  are introduced to 
describe the nonlocality of strain-gradient field,   is an internal characteristic length, 0e  and 1e  
are material constants that can be determined by curve fitting experimental data or by the results 
of molecular dynamics simulations.   x x  represents the Euclidean distance between the points 

x and x . The functions  0 0 , e   x x  and  1 1 , e  x x  are the attenuation (kernel) functions 
defined to create nonlocal effects in the classical stress tensor. The kernel function is a positive 
scalar function with a distance decaying profile, which in the limit of 0ie   , it reverts to the 
Dirac-delta function as shown in Eq. (2). 

    
0

lim  ,  , 0,1
i

i ie a
e i 


   x x x x  (2) 

Using Eq. (1), the classical stress tensor σ  and the higher-order stress tensor  1σ  are obtained as: 
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     0 0 , ijkl kl

V

C e dV    σ x x x x  (3-a) 
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1 1 , , ijkl kl m
V

l C e dV   σ x x x x  (3-b)  

The total stress tensor t  of the nonlocal strain-gradient theory, is related to σ  and  1σ  via the 
following equation: 

  1  t σ σ  (4) 

where   is the Laplacian operator. We assume that the nonlocal kernel functions  0 0 , e   x x  

and  1 1 , e  x x  satisfy the conditions presented by Eringen[10], which means that the linear 
nonlocal differential operator can be expressed as follows: 

  2 21i ie    (5) 

Applying the operators of Eq. (5) on both sides of Eq. (4), the constitutive equations based on the 
generalized nonlocal strain-gradient can be derived as follows: 
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where 
2 2

2
2 2x y

 
  

 
 is the two-dimensional differential operator. The Eq. (6) contains three 

scale parameters. 0e   denotes the lower-order nonlocal parameter, 1e  is the higher-order 
nonlocal parameter and l  is the strain-gradient parameter. By setting 0l   and 1 0e    the 
GNSG theory can be reduced to the PNL theory (Eringen [9-11] as shown in Eq. (7). 

  2 2
01 ij ijkl kle C      t  (7) 

Setting 0 1 0e e    in Eq. (6), the PSG model (Mindlin [52, 53] ) can be derived as: 

 2 2
ij ijkl kl ijkl klC C l   t  (8) 

It is worth stressing that by keeping terms of order  2  and setting 0 1e e e     the reduced 
nonlocal strain-gradient (RNSG) model can be achieved as: 

    2 2 2 21 1ij ijkl kle C l        t  (9) 

In fact, the RNSG theory integrates the both pure nonlocal (PNL) theory and pure strain-gradient 
(PSG) theory in a unified nonlocal strain-gradient model with two scale parameters (i.e., e  and 
l ). 
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3. Generalized nonlocal strain-gradient plate model 
In the following section, a generalized nonlocal strain-gradient (GNSG) continuum model is 
developed for the vibration analysis of graphene sheets. We consider a rectangular nanoplate of 
length a , width b, and constant thickness of h under plane stress condition. The plate occupies 
the domain  0 , 0 , - / 2 / 2x a y b h z h        as shown in Fig. 1. 

 
Fig. 1 Geometry and dimensions of a thick nanoplate with an armchair lattice along x-axis 

According to the first-order shear deformation (FSDT) plate theory, the displacement field of an 
arbitrary point  , ,x y z  within the domain   is expressed as (Wang et. al[54]): 

      0, , , , ,  , , xu x y z t u x y t z x y t   

(10)       0, , , , ,  , , yv x y z t v x y t z x y t   

    0, , , , , w x y z t w x y t  

where 0 0, u v  and 0w  denote the displacements in the middle surface of the nanoplate along x , y 

and z directions, respectively; and t  represents the time in seconds. Also, x  and y  are the 
cross-sectional rotations of the mid-plane in x  and y directions. The strain-displacement 
relations are given by: 

      0 1z     (11) 

The material property matrix for the orthotropic case is expressed as: 
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The stress resultants in an orthotropic plate are related to the generalized displacements 
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Using Eq. (6), the constitutive relations of an orthotropic plate based on the generalized nonlocal 
strain-gradient in Cartesian coordinates can be written in the following compact form: 
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The strain energy of the nanoplate is given by (Wang et al. [54]): 

   1
2 V dV Π t   (15) 

The strain energy expression in terms of the plate nonlocal stress and strain fields (see, Eq. (11)) 
without any external forces is given by: 
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Integrating through the thickness of the plate model, we obtain: 

 1 1 1 0 0

Ω

1 M M M S S Ω
2 xx xx yy yy xy xy xz xz yz yz d        Π    (17) 

where 
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Here,  2
i ie   is a newly defined nonlocal parameter and   is a higher-order differential 

operator. Hence the strain energy of Eq. (17) for the present GNSG plate model can be obtained 
in the following form. 
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To implement the Ritz procedure in the numerical example section, the bilinear symmetric form 
of the strain and functional is achieved by using the Green's first identity as below: 

 

      

   
       

2 222 2
11 , 12 , , 22 , 66 , , 55 0, 44 0,

1 11 , , 12 , , 22 , , 66 , , , ,

55 0, 0, 44 0, 0,

2
11

1 Ξ 2Ξ Ξ Ξ Ξ Ξ
2

Ξ 2Ξ Ξ Ξ

Ξ Ξ

Ξ

x x x x y y y y x y y x x x y y

x x x x x x y y y y y y x y y x x y y x

x x x x y y y y

w w

w w w w

l

       

          

   



        

             

         

 

Πb

   
       

   
 

, , 12 , , 22 , , 66 , , , ,

55 0, 0, 44 0, 0,

2 2 2 2 2 2 2 2
0 11 , , 12 , , 22 , , 66 , , , ,

2 2
55 0,

2Ξ Ξ Ξ

Ξ Ξ

Ξ 2Ξ Ξ Ξ

Ξ

x x x x x x y y y y y y x y y x x y y x

x x x x y y y y

x x x x x x y y y y y y x y y x x y y x

x x

w w w w

w

         

   

          



           

         

             

         2 2
0, 44 0, 0,Ξx x y y y yw w w d         

 (20) 

 

The Euler-Lagrange equations for the first-order shear deformation plate neglecting the in-plane 
displacements of the middle surface and external loads are given by (Wang et al.[54]): 
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  
           

     

1 11 , , 12 , , , , 22 , ,

66 , , , , 55 0, 0, 44 0, 0,

2
11 , , 12 , , , , 22 , , 66 , , , ,

55

1 Ξ Ξ Ξ
2

Ξ Ξ Ξ

Ξ Ξ Ξ Ξ

Ξ

x x x x x x y y y y x x y y y y

x y y x x y y x x x x x y y y y

x x x x x x y y y y x x y y y y x y y x x y y x

x

w w w w

l

        

       

           




       

           

           



�

          
       

         
 

2 2
0, 0, 44 0, 0, 0 11 , , , ,

2 2 2 2 2 2
12 , , , , , , , , 22 , , , ,

2 2
66 , , , , , , , ,

2
55 0,

Ξ Ξ

Ξ Ξ

Ξ

Ξ

x x x y y y y x x x x x x x x

x x y y y y x x y y x x x x y y y y y y y y y y

x y y x x y y x x y y x x y y x

x x

w w w w

w

       

           

       



           

              

        

           
         

2
0, 0, 0,

2 2
44 0, 0, 0, 0,Ξ Γˆ

x x x x x x

y y y y y y y y

w w w

w w w w d

  

   

    

         
n

 

(21) 

 , , 2 ,

, , 2 ,

, , 0 0,

M M S I

M M S I

S S I

xx x xy y x x tt

yy y xy x y y tt

x x y y ttw





  

  

 
 (22) 

Similarly, the bilinear symmetric form of the kinetic energy functional can be derived in the 
following form: 

  

        
      

   

2 2 2
0 0, 2 , ,

2 2 2
0 1 , , , , , , 0

4 4 4
0 1 , , , , , , 0

2 2 2 2 2 2
0 1 0

1 I +I
2

M M S M M S S S

M M S M M S S S

1 M M S M M
2

t x t y t

xx x xy y x x yy y xy x y y x x y y

xx x xy y x x yy y xy x y y x x y y

xx x xy y x yy y xy x

w

w

w dxdy

w dy

 

   

   

     



 

          

         

           

Τ

  
    

0

4 4 4 4 4 4
0 1 0 0

S

M M S M M S

y

xx x xy y x yy y xy x y

w dx

w dy w dx     






          



 

 

In which    is the angular frequency of the SHM. 

Analytical solution of the present problem is very difficult. In this research, a 
numerical method that utilizes an efficient polynomial-based Ritz procedure is 
employed to determine the natural frequencies of the nanoplate. 

 

(23) 
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       
  

      
 

2 2 2 2
2 0 0 0 1 2 0 0 0

2 2 2 2 2 2
0 1 2 0 0 0

2 2 2 2 2 2
0 1 0 0

4 4 4 4
0 1 0

1 I I I I
2

I I

1 M M S M M S
2

M M S M

x y x x y y

x x y y

xx x xy y x yy y xy x y

xx x xy y x yy

w w w

w w dxdy

w dy w dx

w dy

        

     

     

    





           

        

        

     





Τ

�

b

  
    

    
  

4 4
0

0 1 2 0 0 0

2 2 2 2
0 1 2

2 2
0 0 0 0 0

M S

1 I I
2

I

I Γˆ

y xy x y

x x y y

x x x x y y y y

w dx

w w

w w w w d



     

         



   

      

         

     



n

�

 

Table 1. Gram-Schmidt orthonormalization procedure  
Step Gram-Schmidt technique 

1 

 

1 3

2 4

2 2 3 2 2 3

1-

1-

1, , , , , , , , , ,i

x x
a a

y y
b b

x y x xy y x x y xy y

 

 

       
   

       
   

 







 

2  
i i z  

3 

   

       

1 1

1

1

i

j i ij j
j





 

    





z z

z z z z  

4  
   

   

,

,
i j

ij
j j


 

 

 z z
z

z z
 

5            
0 0

, , ,
b a

i j i jx y x y dxdy    z z z z  

6 

 
 

 

     ,

i
i

i

i i i


 



   


z

z

z

z z z
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4. Solution procedure of the Ritz method 

The Ritz trial functions for transverse deflection  ,W x y  and the cross-sectional rotations 

 Φ ,  x x y  and  Φ ,y x y  are each expressed in terms of two-dimensional orthogonal polynomial 
functions sets as follows: 

      

     

     

1

1

1

, Ψ ,

Φ , Ψ ,

Φ , Ψ ,

N
w

i i
i

N
x

x i i
i
N

y
y i i

i

W x y x y

x y x y

x y x y































 (24) 

In the Eq. (24), i , i  and i  are unknown coefficients, N  denotes the order of approximation 

in the discretization series. The functions  Ψ w
i
 ,  Ψ x

i
  and  Ψ y

i
  are basis functions in the Ritz 

method obtained from the Gram-Schmidt ortho-normalization process through the steps shown 
in Table 1: 

where , , w x yz  and Δk  ( k  1, 2, 3 and 4) represent the edge parameters controlling the 
boundary conditions of the rectangular GNSG plate model. Each of the edge parameters can be 
set to 0 and 1 for free ( F ), simply supported ( S ) and clamped (C ) edge conditions as follow: 

Table 2. Values of the edge parameter Δ k  for different types of boundary conditions 

Δ k  

Transverse deflection 

Function: 
 Ψ w
i


 

cross-sectional rotation 

functions: 
   Ψ , Ψx y
i i
 

 

0 free ( F ) 
free ( F ) or 

simply supported ( S ) 

1 
simply supported ( S ) 

or clamped ( C ) 
clamped ( C ) 

  
Substituting Eq. (20) and Eq. (23) into the total energy functional ( Π Τb b ) and applying 
standard Ritz procedure to minimize the total energy with respect to the unknown coefficients 
yield: 

 

      
   ,      ,   

r r r

     
  

Π Τ Π Τ Π Τb b b b b b

    
(25) 

 1, 2, , Nr    

 
This leads to the eigenvalue equations in matrix form as shown in Eq. (26). 
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    

 
 
 

2 0
 
   
 
 

W
K M X

Y
 

(26)  

   
   

   
   

ww wx wy ww

xw xx xy xx

yw yx yy yy

,

ij ij ij ij

ij ij ij ij

ij ij ij ij

                    
                     
                    

k k k m O O

K k k k M O m O

k k k O O m

           

where K  and M  are the 3N 3N  symmetric positive-semidefinite stiffness and positive-definite 
mass matrices, respectively.  

The entries of the symmetric nonlocal strain-gradient stiffness matrix ( K ) are given by: 
                 

                 
ww

55 , , 44 , , 1 55 , , 44 , ,0 0

2 2 2 2 2
55 , , 44 , , 0 55 , , 44 , ,

Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ

Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ

b a w w w w w w w w
ij i x j x i y j y i x j x i y j y

w w w w w w w w
i x j x i y j y i x j x i y j yl dxdy





       
            

 k        

       

 

(27) 

                   wx 2 2 2
55 , 1 55 , 55 , 0 55 ,0 0

Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ
b a w x w x w x w x

ij i x j i x j i x j i x jl dxdy              k        

 

                   wy 2 2 2
44 , 1 44 , 44 , 0 44 ,0 0

Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ
b a w y w y w y w y

ij i y j i y j i y j i y jl dxdy              k        

 

                   xw 2 2 2
55 , 1 55 , 55 , 0 55 ,0 0

Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ
b a x w x w x w x w

ij i j x i j x i j x i j xl dxdy              k        

 

            

            
           

   

xx
11 , , 66 , , 550 0

1 11 , , 66 , , 55

2
11 , , 66 , , 55

2 2 2
0 11 , , 66 ,

Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ

Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ

Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ

Ξ Ψ Ψ Ξ Ψ

b a x x x x x x
ij i x j x i y j y i j

x x x x x x
i x j x i y j y i j

x x x x x x
i x j x i y j y i j

x x
i x j x i y

l





  

        

        

    

 k      

     

     

           2 2 2
, 55Ψ Ξ Ψ Ψx x x x

j y i j dxdy    
  

 

                 
                 

xy
12 , , 66 , , 1 12 , , 66 , ,0 0

2 2 2 2 2
12 , , 66 , , 0 12 , , 66 , ,

Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ

Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ

b a x y x y x y x y
ij i x j y i y j x i x j y i y j x

x y x y x y x y
i x j y i y j x i x j y i y j xl dxdy





       
            

 k        

       
 

 

                   yw 2 2 2
44 , 1 44 , 44 , 0 44 ,0 0

Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ
b a y w y w y w y w

ij i j y i j y i j y i j yl dxdy              k        
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                 
                 

yx
12 , , 66 , , 1 12 , , 66 , ,0 0

2 2 2 2 2
12 , , 66 , , 0 12 , , 66 , ,

Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ

Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ

b a y x y x y x y x
ij i y j x i x j y i y j x i x j y

y x y x y x y x
i y j x i x j y i y j x i x j yl dxdy





       
            

 k        

       
 

            

            
           

   

yy
22 , , 66 , , 440 0

1 22 , , 66 , , 44

2
22 , , 66 , , 44

2 2 2
0 22 , , 66 ,

Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ

Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ

Ξ Ψ Ψ Ξ Ψ Ψ Ξ Ψ Ψ

Ξ Ψ Ψ Ξ Ψ

b a y y y y y y
ij i y j y i x j x i j

y y y y y y
i y j y i x j x i j

y y y y y y
i y j y i x j x i j

y y
i y j y i x

l





  

        

        

    

 k      

     

     

           2 2 2
, 44Ψ Ξ Ψ Ψy y y y

j x i j dxdy    
  

 

And the entries of the symmetric higher-order nonlocal mass matrix ( M ) can be expressed in the 
form as follows: 

 
               ww 2 2

0 0 1 0 10 0
I Ψ Ψ Ψ Ψ Ψ Ψ

b a w w w w w w
ij i j i j i j dxdy           m        

(28) 
               xx 2 2

2 0 1 0 10 0
I Ψ Ψ Ψ Ψ Ψ Ψ

b a x x x x x x
ij i j i j i j dxdy           m        

               yy 2 2
2 0 1 0 10 0

I Ψ Ψ Ψ Ψ Ψ Ψ
b a y y y y y y

ij i j i j i j dxdy           m        

    N N
0


O  

The unknown vectors  W , X  and  Y  are given by: 

            1 2 1 2 1 2 ,  , , ,  ,  , , ,  ,  , , 
1, 2, , N

r r r

r
     

 

T T TW X Y                    (29) 

where the superscript “ T ” denotes the transposition operator. By solving Eq. (26), the natural 
frequencies and related mode shapes of the proposed plate model can be obtained. 

5. Dispersion relations of GNSG plate model 
In order to obtain the dispersion relations of the GNSG plate model, the equations of motion 
based on the first-order shear deformation plate theory should be derived. By substituting Eq. 
(12) and Eq. (13) into Eq. (14) and then into the Eq. (22), the equations of motion for the first-
order shear deformation plate based on the GNSG theory can be derived as follows: 

 
       2

1 0 11 , 12 , 66 , , 55 0, 1 0 2 ,Ξ Ξ Ξ Ξ Ix xx y yx x yy y xy x x x ttl w                   
(30) 

       2
1 0 12 , 22 , 66 , , 44 0, 1 0 2 ,Ξ Ξ Ξ Ξ Ix xy y yy x yx y xx y y y ttl w                   
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       2
1 0 55 , 0, 44 , 0, 1 0 0 0,Ξ Ξ Ix x xx y y yy ttl w w w             

where the coefficients Ξij  are defined in earlier sections. 

To study the wave propagation in nanoplates, the following harmonic functions are considered 
for the flexural waves and shear waves: 

Flexural waves: 

    
0 , ,     x yi t k x k yw x y t We  (31) 

Shear waves: 

        ,, , Φ , , Φ         x y x yi t k x k y i t k x k y
x x y yx y t e x y t e   

Where, W , Φx
  and Φy

  represent the modal amplitudes of the flexural, and shear waves, xk  and 

yk  are the wave normal vector components of  , k  x yk k  along x  and y   directions, 
respectively and   is the wave frequency. 

The substituting Eq. (31) into Eq. (30), yields the wave equation as follows: 

 
11 12 13

12 22 23

13 23 33

0
Φ 0
Φ 0

x

y

A A A W
A A A
A A A

    
         
        







 (32) 

Where, the entries of the 3 3  coefficient matrix ( A ) are given as: 

     

     
     

22 2 2 2 2 2 2
11 1 0 1 0

6 4 2 2 4 4 2 2 2 2 4 2 2
55 0 1

6 2 4 4 2 4 2 2 2 2 4 2 2
44 0 1

1 I

Ξ 2

Ξ 2

x y x y x y

x x y x y x x y x x x y

y x y x y y x y y y x y

A k k k k k k

k k k k k k k k l k k k k

k k k k k k k k l k k k k

   

 

 

        
 

         

         

 

(33) 

      5 3 2 4 2 3 2 3 2
12 55 0 1Ξ 2x x y x y x y x x x x yA i k k k k k k k k l k k k k          

      5 2 3 4 2 3 2 3 2
13 44 0 1Ξ 2y x y y x y x y y y y xA i k k k k k k k k l k k k k          

     

     
    

     

22 2 2 2 2 2 2
22 1 0 1 2

6 4 2 2 4 4 2 2 2 2 4 2 2
11 0 1

22 2 2 2 2 2 2
55 0 1

6 2 4 4 2 4 2 2 2 2 4 2 2
66 0 1

1 I

Ξ 2

Ξ 1

Ξ 2

x y x y x y

x x y x y x x y x x x y

x y x y x y

y x y x y y x y y y x y

A k k k k k k

k k k k k k k k l k k k k

k k k k l k k

k k k k k k k k l k k k k

   

 

 

 

        
 

       

        
 

       
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      
     

5 3 3 5 3 3 2 3 3
23 12 0 1

5 3 3 5 3 3 2 3 3
66 0 1

Ξ 2

Ξ 2

x y x y x y x y x y x y x y x y

x y x y x y x y x y x y x y x y

A k k k k k k k k k k l k k k k k k

k k k k k k k k k k l k k k k k k

 

 

        

       
 

     

       
    

    

22 2 2 2 2 2 2
33 1 0 1 2

6 4 2 2 4 2 4 2 2 2 2 4 2 2
22 0 1 1

22 2 2 2 2 2 2
44 0 1

6 4 2 2 4 4 2 2 2 2 4 2 2
66 0

1 I

Ξ 2

Ξ 1

Ξ 2

x y x y x y

y x y x y y y x y y y x y

x y x y x y

x x y x y x x y x x x y

A k k k k k k

k k k k k k k k k l k k k k

k k k k l k k

k k k k k k k k l k k k k

   

  

 



        
 

        

        
 

        1

 

In continue, by equating the determinant of the matrix A  of the Eq. (32) to zero the dispersion 
relations for different wave modes can be obtained. 

The dispersion relation between wave frequency and other parameters can be shown in the form 
of real roots of a function explicitly as below: 

  0 1, , , ,    x yk k l  (34) 

Also,   can be expressed as a function of wavenumber ( k ), which is more convenient and 
practical for analyses as below: 

  0 1, , , k l    (35) 

Where, 2 2
x yk k k  k  is the wavenumber, which is determined as 2π /k   and   is the 

wavelength. 

For plane waves, the phase velocity vector is defined as 
  2

P / kc k  (36) 

Thus the magnitude of the phase velocity vector can be written as: 

 P /c k  (37-a) 

The group velocity, which can be measured by tracking envelopes of a wave packet, is defined 
by: 

 g grad /kc k      (37-b) 

6. Numerical results and discussion 

6.1. Free vibration analysis 

6.1.1. Validation 
To validate the proposed plate model, the natural frequencies of GNSG plates for two reduced 
cases are obtained using the present solution procedure and compared with those obtained by 
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Aghababaei and Reddy[19] and Shahriari et al. [55].  The free vibration of higher-order nonlocal 
strain-gradient plates considering first-order shear deformations has not been studied yet to the 
best of our knowledge. Hence, in order to verify the present higher-order nanostructured plate 
model, the left and right-hand side of Eq. (6) have been compared with the available results of 
the literature for pure nonlocal (PNL) and pure strain-gradient (PSG) cases, respectively. 
Aghababaei and Reddy [19] used the nonlocal linear elasticity theory of Eringen (see, pure 
nonlocal theory of Eq. (7)) to study the free vibration of nanoplates. Shahriari et al.[55] 
presented the free vibration analysis of carbon nanotube-reinforced composite (FG-CNTRC) 
nanoplates based on Mindlin’s strain-gradient theory (see, pure strain-gradient theory of Eq. (8)).  

First case ( 1 0 l ): The free vibration solution presented in Eq. (26) is numerically evaluated 
for an isotropic fully simply-supported nanoplate. Here, the presented formulation reduces to the 
pure nonlocal theory. In Table 3, the numerical results for classical and first-order shear 
deformation theory of plate are presented for the pure nonlocal case. The following parameters 
are used to obtain the numerical values (Aghababaei and Reddy [19]): 

 610 nm, 30 10  Pa , 0.3, 1a E        (38) 

where, a , E , ν  and ρ  are plate length, Young’s modules, Poisson’s ratio and density of the 
plate, respectively. One may observe close agreement of the present results with those of 
Aghababaei and Reddy[19]. 

 

Table 3. Non-dimensional fundamental frequency /ω ωh ρ G  of a simply supported nonlocal plate model (
10 nma  , 

630 1 Pa0E   , 0.3ν  ) 

/b a  /a h  μ  Classical FSDT 
(Ref. [19]) Present 

1 

10 

0 
1 
2 
3 
4 
5 

0.0963 
0.0880 
0.0816 
0.0763 
0.0720 
0.0683 

0.0930 
0.0850 
0.0788 
0.0737 
0.0696 
0.0660 

0.0930528 
0.0850372 
0.0787902 
0.0737444 
0.0695584 
0.0660129 

20 

0 
1 
2 
3 
4 
5 

0.0241 
0.0220 
0.0204 
0.0191 
0.0180 
0.0171 

0.0239 
0.0218 
0.0202 
0.0189 
0.0178 
0.0169 

0.0238705 
0.0218143 
0.0202118 
0.0189174 
0.0178436 
0.0169340 

2 

10 

0 
1 
2 
3 
4 
5 

0.0602 
0.0568 
0.0539 
0.0514 
0.0493 
0.0473 

0.0589 
0.0556 
0.0527 
0.0503 
0.0482 
0.0463 

0.0589024 
0.0555738 
0.0527525 
0.0503213 
0.0481980 
0.0463227 

20 

0 
1 
2 
3 
4 
5 

0.0150 
0.0142 
0.0135 
0.0129 
0.0123 
0.0118 

0.0150 
0.0141 
0.0134 
0.0128 
0.0123 
0.0118 

0.0149699 
0.0141240 
0.0134069 
0.0127891 
0.0122494 
0.0117728 
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Second case ( 0 1 0   ): The free vibration solution presented in Eq. (26) is numerically 
evaluated here for FG-CNTRC nanoplate to discuss the effects of nonlocal parameters on the 
plate vibration response. The presented formulations for GNSG plate model reduces to pure 
strain-gradient case. The nanoplate is fully simply-supported. The following mechanical 
properties for the polymer matrix are considered in this study: 

 3/ 1 , 2.1 , 0.34 , 1.15 /m m ma b E  GPa ν ρ  gr cm     (39) 

Fig. 2 displays the non-dimensional fundamental frequency 2 / /c m mω ωa h ρ E    of a square 
nanoplate for different values of strain-gradient parameter ( / l h ) and length to thickness ratios (

/a h ). Fig. 2 illustrates exact agreement with the results obtained by (Shahriari et al. [55]). 

 

 
Fig. 2 Non-dimensional fundamental frequency 2 / /c m mω ωa h ρ E  presented model and Ref. [55] 

In conclusion, the two validation cases show that the proposed model and solution procedure are 
able to predict the natural frequencies of nanoplates accurately. 

 

6.1.2. Convergence of the method 
The convergence is studied by gradually increasing the number of polynomials used in each 
natural coordinate for the flexural and shear modes ( , ,x yW  Φ  Φ ). To obtain reliable and 
comparatively accurate results, it is necessary to study convergence of the solution model. Fig. 3 
shows the convergence of first three dimensionless natural frequencies for SSSS, CCCC and 
FFFF boundary conditions. It is clearly seen that convergence is achieved as we increase the 
number of polynomial terms. One may notice that N 32  is sufficient for computing the results. 
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(a) (b) (c) 

Fig. 3 Convergence of first three natural frequencies for: a) SSSS, b) CCCC and c) FFFF  

boundary conditions 

6.1.3. Effect of thickness and aspect ratio in different theories 

In this subsection, the first two dimensionless natural frequencies of nanoplates 
2

1/ /cω ωa h ρ E  are studied based on different continuum theories such as classical plate 
theory ( 0 1 0l    ), pure nonlocal theory ( 0 11nm, 0l    ), pure strain-gradient 
theory ( 0 1 0, 1nml    ), reduced nonlocal strain-gradient theory ( 1nml   ) and 
generalized nonlocal strain-gradient theory ( 0 1 1nml    ). These results are provided in 
Table 4 by taking thickness ratio  / 0.02,0.2h b     and aspect ratio  / 1,2a b     for several 
possible boundary conditions. Here, the following parameters are used to obtain the numerical 
values: 
 3

110 , 1.06 TPa , 0.3 , 2250 kg / ma E  ν ρ       (40) 

It is observed, that in the most cases by increasing /h b  and decreasing /a b  the frequency 
parameters cω  decrease. But in some cases with boundary conditions including free edges, an 
opposite behavior is seen (e.g., fundamental frequency of CFCF and SFSF nanoplates). 

Fig. 4 shows the relative difference of other continuum theories (the classical, pure nonlocal, 
pure strain-gradient and reduced nonlocal strain-gradient theories) compared to GNSG theory for 
several possible boundary conditions, thickness and aspect ratios based on the data obtained from 
the Table 4. As mentioned before, the GNSG plate model is considered as a benchmark case in 
our analysis. The five theories (classical, pure nonlocal, pure strain-gradient, reduced nonlocal 
strain-gradient, generalized nonlocal strain-gradient) are compared. A discrepancy between the 
GNSG theory results and other theories is found in Table 4. This is obviously because the 
classical theory cannot exhibit the size-effects. Also the PSG and PNL theories have only a 
single length-scale coefficient and a nonlocal parameter, respectively; which both the theories 
are unable to capture the strain-gradients and nonlocalities in materials, simultaneously. 
Likewise, the results from RNSG and GNSG theories are different, which will be more discussed 
in section 6.1.5. 
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Table 4. Effects of thickness ratio /h b , aspect ratio /a b  and boundary conditions on the first two non-
dimensional natural frequencies 2

1/ /cω ωa h ρ E  for different continuum theories of plate. 

B.C. /a b  /h b  Classical Theory PNL Theory PSG Theory RNSG Theory GNSG Theory 
Mode1 Mode2 Mode1 Mode2 Mode1 Mode2 Mode1 Mode2 Mode1 Mode2 

SSSS 
1 0.02 5.966 14.929 5.452 12.214 6.488 17.951 5.928 14.662 5.814 13.786 

0.2 5.281 11.572 4.826 9.467 5.745 13.957 5.250 11.400 5.160 10.883 

2 0.02 14.925 23.909 12.213 17.870 17.214 31.266 14.074 23.331 12.647 21.533 
0.2 13.768 21.158 11.266 15.814 15.951 27.685 13.039 20.658 11.823 19.230 

SFSF 
1 0.02 2.919 4.901 2.783 4.437 3.039 5.230 2.897 4.735 2.823 4.590 

0.2 2.724 4.306 2.597 3.908 2.839 4.664 2.707 4.232 2.646 4.134 

2 
0.02 2.880 8.336 2.746 6.630 3.002 8.978 2.863 7.136 2.796 6.496 
0.2 2.826 7.625 2.695 6.102 2.949 8.485 2.812 6.784 2.747 6.228 

CFFF 
1 0.02 1.059 2.585 1.035 2.411 1.081 2.737 1.055 2.550 1.048 2.497 

0.2 1.015 2.251 0.993 2.105 1.038 2.409 1.014 2.251 1.009 2.218 

2 
0.02 1.056 4.511 1.032 3.674 1.079 4.882 1.054 3.973 1.047 3.637 
0.2 1.031 4.082 1.007 3.346 1.059 4.537 1.035 3.717 1.031 3.432 

CFCF 
1 0.02 6.712 8.006 6.327 7.188 8.007 10.207 7.534 9.166 8.194 9.972 

0.2 5.328 6.060 5.042 5.469 6.058 7.089 5.738 6.407 6.042 6.665 

2 0.02 6.698 10.934 6.315 8.639 7.989 14.142 7.517 11.178 8.166 11.580 
0.2 6.232 9.473 5.882 7.545 7.327 12.018 6.911 9.570 7.431 9.753 

CCCC 
1 0.02 10.844 30.685 9.738 24.688 14.075 56.156 12.609 45.201 13.906 51.143 

0.2 8.032 14.053 7.263 11.397 9.486 18.138 8.589 14.809 8.978 15.078 

2 
0.02 29.705 74.463 23.423 54.207 50.577 184.462 39.664 134.397 42.976 151.710 
0.2 23.300 29.520 18.578 21.574 33.729 45.799 27.127 33.859 28.467 34.952 

CCSS 
1 0.02 8.164 18.548 7.379 14.959 9.642 25.268 8.689 20.233 8.954 19.842 

0.2 6.580 12.778 5.973 10.403 7.472 16.153 6.780 13.153 6.867 12.845 

2 0.02 21.485 31.231 17.157 22.706 29.476 47.884 23.283 34.522 22.126 32.935 
0.2 18.300 25.158 14.716 18.532 23.881 36.391 19.158 26.762 18.384 25.708 

CFSF 
1 0.02 4.605 6.249 4.357 5.625 5.071 7.188 4.791 6.461 4.868 6.541 

0.2 3.970 5.137 3.764 4.645 4.319 5.800 4.093 5.244 4.142 5.273 

2 
0.02 4.573 9.489 4.327 7.520 5.041 11.112 4.763 8.790 4.843 8.455 
0.2 4.373 8.514 4.140 6.793 4.813 10.061 4.552 8.019 4.626 7.736 

FFFF 
1 0.02 4.143 5.975 3.742 4.833 4.178 6.246 3.770 5.017 3.474 4.380 

0.2 3.628 5.305 3.289 4.390 3.799 5.560 3.440 4.566 3.221 4.037 

2 0.02 6.559 8.138 5.319 6.475 6.935 8.306 5.577 6.596 4.866 5.680 
0.2 6.324 7.445 5.165 5.960 6.695 7.900 5.420 6.313 4.748 5.492 

 

It can be seen from Fig. 4 that boundary conditions significantly affect the solution. Also it is 
found that the differences among the plate theories are more prominent in the second mode of 
vibration. It means that the scale parameters have an essential role in the vibration analysis of 
nanoplates at higher modes. In some cases (e.g., CCCC and CFCF nanoplates) the results from 
the classical and RNSG theories are smaller than their counterparts from the GNSG theory. For 
the special case of FFFF nanoplate, the results based on PNL theory are larger than those from 
GNSG plate theory. 
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Fig. 4 Relative difference of other continuum theories compared to GNSG theory for several possible boundary 
conditions, thickness and aspect ratios based on the data obtained from Table 4. 

6.1.4. Effect of size-dependent parameters 

The variation of the first three dimensionless frequencies with nonlocal parameters ( 0μ , 1μ ) and 
strain-gradient parameter ( l ) has been demonstrated in Fig. 5 for a SSSS nanoplate based on the 
GNSG theory. Here the mechanical properties of the nanoplate are taken from Eq. (38). The first 
three modes of vibration are considered in this investigation. It is seen that frequency parameters 
increase with l  and decrease with 0μ  and 1μ . The effect of lower-order nonlocal parameter 0μ  on 
the decrement of the frequency parameters ω is more than that of the higher-order nonlocal 
parameter 1μ , due to the fact that the location and mechanism of the two nonlocal parameters are 
induced in Eq. (6) differently. Here also, one may observe that effect of the nonlocal parameters 
( 0μ , 1μ ) and strain-gradient parameter ( l ) on frequency parameters becomes more prominent in 
higher modes. Three cases studied in fig. 5 are listed as the following Equations: 
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 2 2 2
0 01 t 1μ μ l                ∶ ∶  

(41)  2 2 2
1 11 t 1μ μ l                 ∶ ∶  

 2 2 2
1 0 11 1 t 1μ μ μ                  ∶  

By Substituting 1 0μ  , 0 0μ   and 0l   into the Eq. (6), the equations (41), (42) and (43) can be 
obtained, which belong to the three cases depicted in Fig. (5-a,d,g), Fig. (5-b,e,h) and Fig. (5-
c,f,i), respectively. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 

Fig. 5 Variation of the: (a-c) First, (d-f) Second and (g-i) Third non-dimensional frequencies with nonlocal 
parameters ( 0μ , 1μ ) and strain-gradient length scale parameter ( l ) 

6.1.5. Simplification of GNSG model (RNSG vs. GNSG) 
In the Figs. 6-8, the variation of first three frequency parameters of the two RNSG and GNSG 
theories is compared by changing the parameters l  and 0 1μ μ μ   for a fully simply-supported 
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nanoplate. The mechanical properties are taken from Eq. (38). The variation of relative error 
percentage arises between the two models is also depicted for each vibration mode. 

 

 
 

(a) (b) 
Fig. 6 a) Variation of the first mode non-dimensional frequency of the RNSG and GNSG theories with (

0 1μ μ μ  ) and l , b) Relative error percentage between the two models for each point ( ,μ l ) 

It is observed that for the higher modes the relative error percentage is increased. It means that 
the simplification of the GNSG theory to the RNSG theory is not acceptable especially for higher 
modes. It’s worth stressing that most researchers applied only the reduced nonlocal strain-
gradient theory in their analysis, which neglects the higher order gradients (Li and Hu [41], Li 
and Hu[43], Li et al. [45], Li et al.[46], Ebrahimi et al.[47]). 

(a) (b) 

Fig. 7 a) Variation of the second mode non-dimensional frequency of the RNSG and GNSG theories with (
0 1μ μ μ  ) and l , b) Relative error percentage arises between the two models for each point ( ,μ l ) 

From Figs. 6-8 we may also observe that the relative error percentage is increased with 
increasing each parameters μ  and l  for all vibration modes. For example, in the fig. 6, 7 and 8 
the maximum relative error percentage equals to 5.12%, 6.23% and 17.78% for the first, second 
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and third modes, respectively. We also can realize that within a limited domain (for small values 
of   and l ), the results from GNSG theory become a bit larger than those of RNSG theory. 

 
(a) 

 
(b) 

Fig. 8 a) Variation of the third mode non-dimensional frequency of the RNSG and GNSG theories with (
0 1μ μ μ  ) and l , b) Relative error percentage arises between the two models for each point ( ,μ l ) 

6.1.6. Effect of aspect ratio 

Figs. 9-12 present the variation of the first four dimensionless frequencies with aspect ratio based 
on different continuum theories for a SSSS, CFFF, SFSF and CFCF nanoplate. We have used the 
material properties of the Equation (40) in our analysis in Figs. (9-12). The scale parameters are 
considered as: 2

0 1 1nm    and 1 nml . The figures show that the frequency parameters 
increase with aspect ratio and the effect of the aspect ratio becomes more noticeable in the higher 
vibration modes. It is also observed that unlike the most cases, in some boundary conditions the 
frequency parameter curve computed based on GNSG theory is plotted on the top of the curves 
of the PSG/Classical theories (e.g. in the fig. 12 in the first mode).  

As the length ( a ) of the nanoplate increases ( b constant), the dimension of the plate is being 
larger along x  direction and thus, the softening effect of the nonlocal parameters ( 0 1,  ) is 
vanishing gradually. This is in agreement with other reports in the literature where increasing 
any dimension of a structure decreases the influence of scale parameters and the model reverts to 
an equivalent classical-local model. In the Fig. 10 and 11, the fundamental and second mode 
frequencies will be fixed after a special value of aspect ratio for the classical and PSG theories. 
This “fixing phenomenon” is occurred duo to the fact that after a range of aspect ratios, when 
a b  increases, the frequency curves get close to the frequencies of the fundamental and first 
over-tone modes of a classical-local cantilever beam. Thus, in this case we have a narrow and 
long plate. This time, for the other cases (PNL, RNSG and GNSG theories), the effect of 
nonlocal parameters is the cause of a shift in fixing the frequencies after specific range of aspect 
ratio. For the classical plate and PSG plate this phenomenon happens faster than other theories. 
For the PSG plate model, the strain-gradient parameter actually does affect the structural 
stiffness and pushes the cusp point of the fixing phenomenon further than classical one. 
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(Mode 2) 
 

(Mode 3) (Mode 4) 
 

Fig. 9 Variation of first four dimensionless frequencies of a SSSS nanoplate with aspect ratio for different 
continuum theories  

 
(Mode 1) (Mode 2) 

 
(Mode 3) 

 
(Mode 4) 

 

Fig. 10 Variation of first four dimensionless frequencies of a CFFF nanoplate with aspect ratio for different 
continuum theories 

 

 
(Mode 1) 

 
(Mode 2) 

 
(Mode 3) 

 
(Mode 4) 

 

Fig. 11 Variation of first four dimensionless frequencies of a SFSF nanoplate with aspect ratio for different 
continuum theories 
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(Mode 1) 

 
(Mode 2) 

 
(Mode 3) 

 
(Mode 4) 

Fig. 12 Variation of first four dimensionless frequencies of a CFCF nanoplate with aspect ratio for different 
continuum theories 

6.2. Wave propagation analysis 
To explain the size effects of the generalized nonlocal strain-gradient theory for wave 
propagation in materials at nano-scales, some numerical examples are presented and discussed. 
First, to test the applicability of the present size-dependent plate theory for wave propagation in 
graphene sheets, the flexural dispersion curve for a single-layer graphene is obtained using the 
GNSG plate model and compared with experimental results in Fig. 13. The nonlocal parameters 
and strain-gradient parameter are determined by fitting flexural dispersion function to 
experimental data (Mohr et al.[56]): 18 2

0 1 0.00371 10  nmμ μ   , 129.09615 10  nml  . The 
material properties of the orthotropic plate model are taken from the elastic properties (

0.129 nmh  , 1 2434GPaE  , 2 2473GPaE  , 12 13 23 1039GPaG G G   , 12 21 0.197   , 
3=6316kg m ) of a specific single-layer graphene presented by Shen et al.[57]. It is assumed 

that wave propagates only along x   direction ( 0 ,y xk k k  ) in an armchair graphene sheet 
(see, Fig. 1 for details). 

Fig. 13 shows dispersion curve based on the classical-local plate theory, which fails to capture 
the stiffness adjustment effect of the scale parameters and over-predicts the frequencies. Unlike 
the classical-local plate model, the calculated results from GNSG plate model are perfectly in 
good agreement with experimental data. Therefore the present GNSG plate model can be 
applicable for simulating wave propagation phenomenon in graphene sheets. 

From now on, the nanoplate under investigation is considered as homogeneous and isotropic 
with the following geometric and mechanical properties: 10a  nm, 2 nmh  , 1.06TPaE   , 

0.3ν  , 32250 kg mρ   and 5 6sK   (Shear correction factor). The dispersion relation between 
the wave frequency parameter ( 0ω ωh ρ G ) and the dimensionless wavenumber ( K kh ) for 
various non-dimensional nonlocal parameters ( 0 0θ μ h , 11θ μ h ) and dimensionless strain-
gradient parameter ( β l h ) are illustrated in Fig. 14. In this figure, the wave frequencies 
increase continuously with increasing K  in general, but with different rates. The wave 
propagation solution for the CLT theory without scale effects can be deduced by taking 0θ , 1θ  
and β  to zero. In this case, for higher values of K , the wave frequency varies linearly and the 
wave propagates non-dispersively. For the cases when l  is dominant ({ 0 1θ 1 8,θ 1 4, 1 2  β   }, 
{ 0 1θ 1 4,θ 1 8, 1 2  β   }), the dispersion curves appear between CPT and PSG curves. On the 
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other hand, the dispersion relation tends to be dispersive for dominant nonlocal parameters ({
0 1θ 1 2,θ 1 4, 1 8  β   }, { 0 1θ 1 4,θ 1 2, 1 8  β   }). 

 

 
 

Fig. 13 Flexural dispersion curves of a single-layer graphene from 
experimental data (Mohr et al. [56]) compared with GNSG and classical plate 

models (
18 2

0 1 0.00371 10  nmμ μ   , 
129.09615 10  nml  ). 

 

 
Fig. 14 Dispersion curves based on GNSG theory with all possible combinations of dimensionless nonlocal and 

strain-gradient parameters. The other theories (CLT, PNL, PSG) are demonstrated with the black lines. 
 

In a special case  0 1θ 1 8,θ 1 2, 1 4  β   , it is noticed that with increasing K , ω becomes 
slightly higher than the classical solution in a range of wavenumbers ( 4K  ) while as K  further 
increases ( 4K  ), ω becomes lower than the classical solution. In another special case (
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 0 1θ 1 2,θ 1 8, 1 4  β   ), this trend is completely inverse. These particular cases originated 
from both the diminution and enhancement effects of the new higher-order generalized nonlocal 
strain-gradient plate model. 

The influence of the nonlocal parameters and strain-gradient parameter on dispersion relations is 
further illustrated in Figs. 15-18. Here the non-dimensional nonlocal and strain-gradient 
parameters are taken from the Table 5: 

 
Table 5. Different continuum theories considered in ϐigs. 15-18. 

Continuum theory 0θ  1θ  β  
CLT 0 0 0 
PNL 1/2 0 0 
PSG 0 0 1/4 

GNSG 1/2 1/2 1/4 
 
 

  
 

(a) 
 

(b) 
Fig. 15 Comparison of the a) Phase velocity and  b) Group velocity dispersions in nanoplates 
modeled by several continuum theories 
From Fig. 15-a it can be seen that there are two wave mode branches (flexural and shear). The 
figure shows the dimensionless phase velocity Pv  as a function of K . For both flexural and 
shear mode branches, the wave phase velocities of all the plate continuum models (GNSG, 
PNL, CLT and PSG) are very close to each other and non-dispersive for small values of 
dimensionless wavenumber ( 0.7K  ). However, for the flexural mode branch, the phase 
velocity increases gradually with increasing K  for the CLT model, while it increases sharply 
for the PSG model. For the PNL model, the phase velocity decreases continuously with K  but 
for the GNSG model, the stiffness enhances due to the presence of the strain-gradient 
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parameter ( β ), which makes the GNSG curve appear above the PNL curve. This time for the 
shear mode branch, the phase velocity drops sharply for small values of 3.8K   for all the 
continuum theories. In this case, as K  further increases ( 3.8K  ), the phase velocity decreases 
more slightly and converges to the flexural mode curve for each plate model. At very large 
wavenumbers ( K   ), it is expected that Pv  tends to zero for the PNL model due to presence 
of the escape frequency. A very sharp increase in PSG curve can be observed for 3.8K   
because of the strain-gradient stiffening effect. 

The fig. 15-b shows the dimensionless group velocity Gv  as a function of K . The shear mode 
curves are shown with dashed lines. For flexural modes it is observed that the lowest curve 
belongs to the PNL model due to the fact that nonlocal parameter introduces the escape 
frequency where the group velocity tends to zero. The highest curve above the others belongs to 
the PSG theory. The GNSG curve is limited between the PNL and CLT curves only for flexural 
mode. In the shear mode, all of the theories demonstrate a non-dispersive linear behavior for 
small values of 0.7K   but as the wavenumber increases, the PNL, CLT and GNSG curves 
become dispersive and nonlinear excluding the PSG model, which for all values of K  its curve 
shows a linear (non-dispersive) relationship between K  and Gv . It is worth noting that the PSG 
curve monotonically increasing with K  but for the CLT and PNL models the group velocity first 
increase sharply with small values of K  and then slowly decreases asymptotically. There is an 
exceptional case of GNSG that shows a quite opposite behavior among the other theories for the 
shear mode; that is, with increasing K  the curve first decreases (i.e., group velocity becomes 
negative and wave envelopes move in opposite direction) for small values of wavenumber ( 1K 
) then increases for larger values of K . 

 
(a) 

 
(b) 

Fig. 16 Comparison of the velocity- frequency a) Pv ω  and b) Gv ω  dispersion curves in nanoplates modeled by 
several continuum theories 

 
Fig. 16 presents the dimensionless phase velocity ( Pv ) and group velocity ( Gv ) as a function of 
ω  for both flexural and shear wave modes. Generally, by increasing ω, the curves of the shear 
branch gradually approach their counterparts in flexural branch. In the fig. 16-a, the PSG curve 
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increases with increasing the dimensionless wave frequency (ω) for flexural modes but the PNL 
curve first increases for small value frequencies and then decreases due to the existence of the 
escape frequency originated from non-dimensional nonlocal parameter 0θ 1/ 2  (i. e, an arc-type 
shape). It should be noted that in the PNL as 0θ  tends to 1, the corresponding escape frequency 
decreases. The GNSG curve increases with small values of ω and with further increase of ω it 
imperceptibly decreases asymptotically and then it fixed. Thus unlike the PNL model the GNSG 
curve does not reach to zero. The GNSG phase velocity curve is appeared between the two PNL 
and CLT curves. In the shear modes, except the PNL case, which strongly increases with ω, the 
other theories decrease asymptotically. 

In the fig. 16-b the PSG group velocity curve increases monotonically with ω for both flexural 
and shear modes. Again close to the escape frequency the PNL curve tends to zero in flexural 
mode. The flexural curve of the GNSG model first increases with ω then after a peak point it 
decreases slightly but it is not tends to zero as the PNL curve because of stiffness enhancement 
effect in GNSG model. In fact, the considered GNSG plate model have not an escape frequency. 
In the shear modes, the PNL curve is completely negative but the GNSG curve goes negative 
partly and then after increasing ω enough, it then increases and becomes positive completely. 
The dispersion curve of the CLT group velocity increases with all values of wave frequencies ω 
in the examined range but for larger ω it will be reached to a fixed value. 

 
Fig. 17 Effect of dimensionless nonlocal parameter 0θ  on dispersion relation of a GNSG plate model  

The influence of dimensionless nonlocal parameter 0θ  on dispersion relation of a nanoplate 
based on GNSG theory is depicted for both flexural and shear modes in fig. 17. The material 
properties of the nanoplate is taken from Eq. (40) and 2 nmh  . The parameter 0θ  varies from 0 
to 1 and the non-dimensional scale parameters are taken as 1θ 1 2  and 1 4β  . The fig. 17 
shows the dimensionless wave frequency as a function of two variables as  0,θω ω K  . It can be 
seen that for both flexural and shear modes the wave frequency inversely proportional to 0θ  but 
the effect of 0θ  on the decrement of the ω is more prominent in higher wavenumbers and it is 
insignificant for small values of 0.3K  . 
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(i) 
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(k) 

 
(l) 

 

Fig. 18 Fronts of the flexural solitary waves propagating through a square nanoplate modeled based on the (a-
c) CLT theory, (d-f) PNL theory, (g-i) GNSG theory and (j-l) PSG theory. ( 10a  , 12 nmx yk k   , 2h  ) 

Fig. 18 shows a traveling solitary wave propagating through a first-order shear deformation 
nanoplate with length 10 nma   at times 0st  , 2s  and 4s  for classical elasticity, PNL elasticity 
, PSG theory and a general case of the present GNSG model (the nonlocal and strain-gradient 
parameters are taken from Table 5). 
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The wave fronts of all the four cases are adjusted by the wavenumber taken as ( 12nmx yk k   ) 
and starting to propagate from the source point at the middle of the nanoplate while 0t s . From 
the fig. 18 it is apparent that the waves fronts are different in speed of propagation (propagation 
delays and advances) for different continuum theories due to the fact that the wave frequency 
and the speed of wave propagation is strongly influenced by the nonlocal and strain-gradient 
parameters ( 0θ , 1θ  and β ) included in the studied plate models. In this case, the speed of 
traveling flexural waves for the different continum theories are compared as below: 
 PNL GNSG CLP PSG    (42) 

This comparison of the waves speed in Eq. (44) is not always true and it depends on the value of 
the wavenumbers xk  and yk  and the chosen size-dependent parameters 0 1 θ ,  θ  and β  in the 
problem. 

 

7. Conclusions  
To integrate the effects of higher-order nonlocal stress field with the nonlocal effects of strain-
gradient stresses in a unified plate theory, a new size-dependent thick plate model is developed in 
this study. Two nonlocal parameters and a strain-gradient parameter are introduced to capture the 
size effects in the present plate model. Both increase and decrease in the stiffness of the 
nanoplates is feasible to happen depending on the values of these parameters. The free vibration 
and wave propagation of the first-order shear deformation nanoplate are calculated based on the 
generalized nonlocal strain-gradient theory. To predict the natural frequencies for different 
boundary conditions, an orthogonal polynomial-based Ritz method is employed. A closed-form 
of dispersion relation between the wave frequency (or phase/group velocity) and the 
wavenumber is obtained. An intensive parametric study is presented on the effects of nonlocal 
parameters, strain-gradient parameter, aspect and thickness ratios and boundary conditions on the 
natural frequencies and wave propagation. An error analysis conducted on the RNSG and GNSG 
plate theories and a divergence of results is estimated between the two models. The distinctive, 
progressively varying stiffness of nanoplates is not consistent with the pure nonlocal theory or 
the pure strain-gradient theory. This fact is true not only for free vibration analysis but also for 
the dispersion relations. On this basis, this new model predicts a stiffness enhancement effect for 
a range of wave-lengths with the presence of the nonlocal strain-gradients and this is quite 
different from the prevalent nonlocal stress-gradient models. The classical-local and PSG plate 
models generally overestimate the frequencies. Also the frequencies are underestimated by the 
PNL theory. As a result, the GNSG theory should be considered in the free vibration and wave 
propagation of nanoplates and the applicability of the proposed plate model is inevitable in this 
research. 
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