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The present article investigates effects of the multi-frequency 
excitation on the output power of a piezomagnetoelastic energy 
harvester. The piezomagnetoelastic power generator is assumed to 
operate in the mono-stable mode. A perturbation technique based on 
the method of multiple scales is employed to develop an analytical 
solution to nonlinear differential equations governing the system 
dynamics. In addition, a Runge-Kutta numerical scheme is used to solve the 
differential equations. It is shown that the perturbation solution is in a close 
agreement with the numerical solution. The system response is determined 
for several cases including super-harmonic, combination and simultaneous 
resonances. The steady-state output voltage is then obtained for each 
case and compared with that of a single-frequency excitation. Due to 
nonlinearities present in the system, a multi-frequency excitation 
gives rise to complicated phenomena such as combination and 
simultaneous resonances. It is found out that exploiting these 
resonances can significantly increase the amount of energy harvested. 
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1. Introduction 
Human's life has historically depended on using ambient energy to fulfil the essential energy needs 
such as ambient energy employed in sailing ships, waterwheels and windmills. While our life still 
relies on such techniques to provide a portion of the ever-increasing demand for energy, the rapid 
change in technological trends requires modifying or even revolutionizing these old [1-3] concepts. 
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Energy harvesting is the act of scavenging ambient energy available in the environment and 
transforming it into a usable form. Vibrational energy harvesters are one of the most common types 
of energy harvesters. The energy harvested from ambient vibrations is sufficient to provide the 
power required for low-power devices such as data transmitters, wireless sensors, medical 
implants, and controllers. This way, technical issues like wiring complications is reduced and in 
some applications the frequent need of changing batteries is removed [4, 5]. 

Several mechanisms have been utilized so far, to convert vibrational energy into electricity such 
as piezoelectric materials, electromagnetic and electrostatic mechanisms [6, 7]. Piezoelectric 
energy harvesters are the most common devices already used to obtain electrical energy from 
ambient, especially when dealing with low-frequency ambient vibrations. Consequently, 
piezoelectric transducers have received considerable attention [8-10]. The most common structure 
for a vibrational energy harvester is a mechanism consisting of a cantilever beam with piezoelectric 
patches, attached near its clamped end. External environmental excitations applied at the cantilever 
base result in large strains near the clamped end, leading to a voltage difference across the 
piezoelectric patches. The voltage difference may be used to generate a current with a suitable 
circuit design. This way, mechanical energy of the environment is converted into electrical energy 
[11, 12]. During the past two decades, many researches have employed piezoelectric energy 
harvesting in different applications spanning from biomedical devices to microelectromechanical 
systems. Both experimental and theoretical results have demonstrated that some piezoelectric 
energy harvesters are capable of harvesting energy from various locations of human limbs (wrist, 
thigh, and ankle) [13]. MEMS-based energy harvesting is the process by which ambient energy 
has gathered and converted into electricity, employed in small autonomous devices. This energy 
harvester is used for low-power electronic devices [14]. 

Vibrational energy harvesting devices often operate based on the principle of linear resonance. 
The device is tuned optimally so that the excitation frequency coincides with the system 
fundamental frequency. Therefore, tuning a linear vibrational energy harvesting device to an 
excitation frequency is usually very challenging and yields inefficient transduction properties, 
especially outside a laboratory setup. In order to resolve the bandwidth issue for the conventional 
cantilever configuration, different methods have been already implemented. Recently, researchers 
have tried to exploit nonlinear behaviour, exhibited by the cantilever to address the bandwidth 
problem and other modern challenges in vibratory energy harvesting [11, 12]. Considering 
nonlinearities potentially provides favourable conditions for energy harvesting because it extends 
the bandwidth of the harvester and, hence, allows for obtaining large amplitude responses in a 
wider range of frequencies. Therefore, many researchers have used nonlinearities as a means to 
enhance the revenue of energy harvesting device under broadband excitations. Nonlinearities are 
often inherently present in the dynamics of a vibrational energy harvester due to its geometric 
and/or material properties. They stem from different sources such as geometry, nonlinear strain-
deflection relationships due to large deformations, and the nonlinear electromechanical coupling 
mechanism, appearing in the nonlinear constitutive relations of piezoelectricity [15, 16]. The 
piezomagnetoelastic configuration considered in the present paper is a well-known nonlinear 
structure, introduced by Moon and Holmes in 1979 [17]. In this structure, nonlinear forces arising 
between the magnets give rise to a complex nonlinear dynamical system. Later, Erturk and Inman 
[12] attached piezoelectric layers near clamped end of the cantilever for the purpose of  harvesting 
its vibrational energy. The present piezomagnetoelastic harvester could be also employed in 
MEMS devices. Karami and Inman [18]  have used piezomagnetoelastic configuration for linear 
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and nonlinear MEMS harvesters to recharge the batteries of the pacemakers by scavenging the 
vibrational energy from the heartbeats. They suggested piezomagnetoelastic configuration to rise 
the frequency bandwidth of the energy harvesting system and to decrease its sensitivity to heart 
rate. They proposed the configuration, illustrated in Fig. 1 for the monostable energy harvesting. 
The beam is a bimorph, made in micro scale. In this system, the nonlinear behavior is caused by 
the applied magnetic forces.  

 
Fig.1: The nonlinear energy harvesting configuration [18]. 

Erturk and Inman [19] have investigated the piezomagnetoelastic energy harvester in the 
monostable mode and used the method of multiple scales to determine the response of the system 
at the primary resonance. Stanton et al.[20] have employed the method of harmonic balance to 
study the response stability and effect of parameter variations on the output power at the primary 
resonance. Karami and Inman [21] have used a perturbation method to study small-amplitude 
oscillations of the system near its stable equilibrium points. All these studies have focused on a 
single-frequency excitation around the system fundamental frequency. 

Abdelkefi et al.[22] have considered the multi-frequency excitation to enrich the level of energy, 
harvested from a piezoelectric cantilever subjected to a combination of bending and torsional 
loads. They have considered the excitation as the sum of three harmonic terms. Cantilever first 
three natural frequencies are tuned to excitation frequencies by adjusting the asymmetry of tip 
masses. They have performed a parametric study to determine the advantages of tuning the 
structure to harvest energy at multi-frequency excitation. Foisal et al.[23] have studied an array of 
four generators and showed the possibility of harvesting energy from different environmental 
frequencies for this system. They used the magnetic spring technique as a cantilever to scavenge 
energy from vibrations. 

The objective of this paper is to explore the complicated dynamics of the piezomagnetoelastic 
energy harvester, subjected to a multi-frequency excitation. In nonlinear systems with a multi-
frequency excitation, new types of resonances such as combination resonance and simultaneous 
resonance may occur for particular values of excitation frequencies, in addition to the primary, 
superharmonic and subharmonic resonances. Here, we assume that the cantilever base is excited 
with two frequencies. Moreover, the harvester is assumed to operate in the monostable mode. In 
Section 2, we present the mathematical formulation and then we use the method of multiple scales 
to solve the equations governing dynamics of the system. In Section 3, we study the energy 
harvesting problem for superharmonic resonance, combination resonance and simultaneous 
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resonance and RMS† values of the output voltage are determined for each case. A Runge-Kutta 
scheme is then employed to verify the results obtained based on the method of multiple scales. It 
is observed that the perturbation solution is in a close agreement with the numerical solution. 

  

Fig. 2: Piezomagnetoelastic power generator [19] 

2. Mathematical model  
Fig. 2 presents a schematic of the beam with piezoelectric layers and its electrical circuit.  This 
structure consists of a steel beam and two bonded piezoelectric layers. Piezoelectric layers harvest 
energy from the beam deflections. Applied magnetic forces in this system induce the nonlinear 
behaviour. The governing equations for a beam with a magnet on its tip, oscillating between two 
permanent magnets located symmetrically near the free end were derived by Moon and Holmes in 
1979 [17]. In the present research, we consider the same model with two harmonic external 
excitations.  

The non-dimensional governing equations of a monostable piezoelectric energy harvester with a 
cubic nonlinearity under a multi-frequency excitation is given by[19] : 

 

 2 3
0 0 1 1 2 22 2 cos( ) 2 cos( )x x x x v f t f t              (1) 

 0v v x      (2) 

where x is dimensionless cantilever tip deflection, t is dimensionless time, v is dimensionless 
output voltage, ω0 is the first natural frequency of the system, ܽ is the coefficient of the cubic 
nonlinear term, f1 is dimensionless excitation amplitude at frequency	Ωଵand f2 is dimensionless 
excitation amplitude at frequency	Ωଶ, λ is the reciprocal of the dimensionless time constant of the 

                                                   
† Root Mean Square 
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resistive–capacitive circuit (it is inversely proportional to the load resistance) and χ is 
dimensionless piezoelectric coupling term in the mechanical equation. In addition, κ denotes 
dimensionless piezoelectric coupling term in the electrical equation, and a dot signifies 
differentiation with respect to time. Furthermore, ε is a small bookkeeping parameter and µ is a 
mechanical damping term[19]. 

In this research, we investigate a system with only one equilibrium point (monostable mode). The 
cantilever is assumed to oscillate around its equilibrium position (i.e., zero-deflection position). 
Fig. 3 shows the potential energy function for the monostable mode, demonstrating that the system 
has a single equilibrium point.  

 
Fig. 3: Potential energy function for monostable mode. 

 

To determine the tip deflection and the output voltage, Eqs. (1) and (2) should be solved either 
analytically or numerically. The main advantage of analytical methods such as the method of 
multiple scales compared to numerical methods such as Runge-Kutta is that the method of multiple 
scales is able to determine where superharmonic, combination and simultaneous resonances occur. 
It is really difficult to predict these secondary resonances using numerical methods like Runge-
Kutta. In addition, we can obtain a closed-form expression for the frequency-response function 
based on the perturbation method. Having this closed-form expression, we can change different 
parameters such as excitation frequency and excitation amplitude and investigate the effect of each 
parameter on the system behaviour. Moreover, the method of multiple scales captures unstable 
branches of the frequency-response curve which require backward integration and are generally 
very hard to obtain numerically. 

The method of multiple scales is used in this section to solve equations governing the system 
dynamics. For small nonlinearities, the solution may be expanded in terms of powers of ε:  

 

 2
0 0 1 1 0 1( , ) ( , ) ( )x x T T x T T O     (3) 

 2
0 0 1 1 0 1( , ) ( , ) ( )v v T T v T T O     (4) 
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Where the Tn = εn (n = 1, 2) represent different time scales. To render this expansion uniformly 
valid, we use the method of multiple scales [24]. In terms of the new time scales Tn, the time 
derivatives are written as: 
 
 

0 1
d D D
dt

   
(5) 

 2
2 2 2
0 0 1 1 02 2 ( 2 )d D D D D D

dt
      

(6) 

 

Where
n

n

D
T





. Substituting Eqs. (3) and (4) into Eqs. (5) and (6), and the subsequent results into 

Eqs. (1) and (2) yields the following differential equations for different powers of ε: 

 
0 :  
 2 2

0 0 0 0 1 1 2 22 cos( ) 2 cos( )D x x f t f t      (7) 

 
0 0 0 0 0D v v D x     (8) 

1 :  
 2 2 3

0 1 0 1 0 1 0 0 0 0 0 02 2D x x D D x D x x v          (9) 

 
0 1 1 1 0 0 1 1 0( )D v v D v D x D x       (10) 

 

The general solutions to Eqs. (7) and (8) are given by: 

 
 0 0 1 0 2 0

0 1 1 2
i T i T i Tx A e F e F e cc       (11) 

 
0 0 2 0 011 1 1 2 2

0 2
1 2

i T i T Ti TA i F i F iv e e e A e cc
i i i

   


  
     

    
    

 (12) 

 

where cc is the complex conjugate of the preceding term. Moreover, 1
1 2 2

0 1

fF





and 2
2 2 2

0 2

fF



 

. 

Also,  ܣଵ is a complex integration constant. Substituting 0x and 0v in to Eq. (9) yields: 
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 0 0

1 0 2 0

0 0 1 0 2 0 0 1 0

2 2 2 2
0 1 0 1 0 1 0 1 1 1 1 2 1

2 2 2 2
1 0 1 1 1 2 1 2 0 1 1 1 2 2

3 3 3 (2 ) (23 3 3 2 2
1 1 2 1 1 1 2

[2 ( ) 3 ( 2 2 ) ]

[2 3 (2 2 )] [2 3 (2 2 )]

3 3

i T

i T i T

i T i T i T i T i

D x x i A A A A F F A e

i A A F F Fe i A A F F F e

A e F e F e A Fe A F e



  

   

   

    

 

  

      

         

     0 2 0 0 1 0

0 2 0 0 1 0 0 2 0 0 1 0 0 2 0

0 1 2 0 0 1 2 0 0 1 2 0

) (2 )2
1 1

(2 ) ( 2 ) ( 2 ) ( 2 ) ( 2 )2 2 2 2 2
1 2 1 1 1 2 1 1 1 2

( ) ( ) ( )
1 1 2 1 1 2 1 1 2

3

3 3 3 3 3

6 6 6 6

T i T

i T i T i T i T i T

i T i T i T

A Fe

A F e A F e A F e A F e A F e

A F F e A F F e A F F e A



    

  



    

   

 

        

     



    

    0 1 2 0

1 2 0 1 2 0 1 2 0 2 1 0 0 0

2 01

( )
1 1 2

(2 ) (2 ) ( 2 ) (2 )2 2 2 2 1
1 2 1 2 1 2 1 2

1 1 2 2

1 2

3 3 3 3

i T

i T i T i T i T i T

i Ti T

F F e
AiF F e F F e F F e F F e e

i
Fi F ie e

i i



   


 
 

 

        



    


 
 

   

 
(13) 

 

   
The complex conjugate of ܣଵ is represented by	ܣଵതതത. Coefficients A1, appearing in Eqs. (11) and (12) 
are obtained by eliminating so called troublesome terms (including secular and small-divisor 
terms) in Eq. (13)  (reference[24] may be consulted for more details).  

 

3. Results and discussion  
The mechanical and electrical properties of the system considered here are presented in table 1.[19] 
In this investigation, the effect of different excitation frequencies is studied on the system behavior 
and the output power. Numerical simulations are presented based on the perturbation solution for 
several cases including superharmonic, combination and simultaneous resonances.  

Table 1. Parameters of the reference model 
µ = 0.01 α =0.05 

χ = 0.05 λ = 0.05 

κ = 0.5 ω0 = 1 

 

3.1.Superharmonic resonance  
For the superharmonic resonance, the external excitation is assumed to be close to one-third of the 
first natural frequency of the system Ω1

ଵ
ଷ
ω0 . The proximity of Ω1 to ଵ

ଷ
ω0 is expressed by 

introducing the detuning parameter as: 

 
1 03      (14) 

To eliminate small-divisor terms, 1 03 T  is expressed in terms of 0 0T  as follows: 
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1 0 0 0 0 0 0 0 0 13 ( )T T T T T T             (15) 

The modulation equation is obtained by eliminating the secular and small-divisor terms in Eq. 
(13): 

 
12 2 31

0 1 0 1 1 1 1 2 1 12 ( ) 3 ( 2 2 ) 0i TAii A A A A F F A F e
i


   


       


 

(16) 

Letting 1
1
2

iA a e  in Eq. (16) and separating real and imaginary parts of the modulation equation, 

following equations are found: 

 2 3
0 1 12 sin( )

2(1 )
aa a F T     


     


 (17-a) 

 2 2 2 3
0 1 2 1 12

1 13 ( 2 2 ) cos( )
4 2 2(1 )

aa a F F a F T     


      


 
(17-b) 

 
 

Eqs. (17-a) and (17-b) are made autonomous by introducing: 

 
1T     (18) 

The steady-state motions correspond to 0a    . For steady-state oscillations, the frequency 
response equation is obtained as: 

 23 2
2 2 2 21

1 2 02 2 2
0

( )1 1 13 ( 2 2 )
4 2 2(1 ) 2(1 )

Fa F F
a

    
  

              
 (19) 

Equation (19) expresses the frequency response equation associated with the superharmonic 
resonance for the monostable energy harvesting system. 

 
 

Fig. 4: Frequency-response curves at  superharmonic resonance (Ω ≈ ૚
૜
߱଴) in the monostable 

mode for different nonlinear stiffness coefficients 
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Fig. 4 shows the frequency-response curves (a vs. ߪ)  associated with the homogeneous part of the 
response at superharmonic resonance with different nonlinear coefficients. The value of 
homogeneous response amplitude increases near superharmonic resonance (the response 
amplitude is equal to 0.184 for 0.05   and 2  ). Also, it is seen that the response amplitude 
increases by increasing the nonlinear coefficient of the system. Therefore, the energy extracted 
increases with the coefficient of the nonlinear term. It should be noted that the increasing this 
coefficient is limited by physical constraints and depends on the geometry and physical features 
of the system. In fact, after a certain value the harvester operational mode changes and so do the 
governing equations. The value of ߙ depends on the magnetic potential, the stiffness coefficient 
of the system and the beam thickness. According to references[19, 24], value of ߙ can vary 
between 0 (for the linear system) and 0.158 for the monostable mode. In this study, we have 
considered that ߙ varies from 0.03 to 0.06. 

 As expected, the harvester exhibits hardening behavior for positive values of the nonlinear 
coefficient. Time histories for the tip displacement and the harvested electrical voltage are 
illustrated in Fig. 5 at superhamonic resonance with Ω1

ଵ
ଷ
ω0 , Ω2=0, f1 = 0.5 and f2 = 0 For this 

case, the output voltage RMS value is 0.1998. We note that results of numerical solution and those 
obtained based on the method of multiple scales are compared in this Figure. As seen in the Fig.5, 
the results are in excellent agreement.  

 

  
  

Fig. 5 :Time history for the monostable mode at the superharmonic resonance (Ωଵ ≈
૚
૜
߱଴): (a) dimensionless 

displacement and (b) dimensionless voltage  
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3.2.Combination resonance  
Now, we consider that excitation is composed of two harmonic terms:  

 
1 1 2 2cos( ) cos( )f t f t    (20) 

Because of the cubic nonlinearity appearing in Eq. (1), combination resonances occur for particular 
values of the excitation frequencies; that are: 

 
0 2 p q      (21) 

And 

 
0

1 ( )
2 p q     (22) 

 

where p =1 and 2 and q =1 and 2. Among all possible external excitations satisfying Eqs. (21) or 
(22), we choose the following case for the numerical simulation: Ω1 

ଵ
ହ
ω0 and Ω2

ଶ
ହ
ω0   and assume 

 
2 1 02        (23) 

 

with ߪ being the detuning parameter. Using equation (23), 2 1 0( 2 )T    is rewritten as what 
follows: 

 
2 1 0 0 0 0 0 0 0 0 1( 2 ) ( )T T T T T T               (24) 

 
Substituting Eq. (24) into Eq. (13) and eliminating troublesome terms (secular terms and small-
divisor terms) in Eq. (13) yield the modulation equation for the combination resonance as: 

 
12 2 21

0 1 0 1 1 1 1 2 1 1 22 ( ) 3 ( 2 2 ) 3 0i TA ii A A A A F F A F F e
i


   


       


 (25) 

Next, we let 1
1
2

iA ae  , use equation (18) to make Eq.(25) autonomous and set ܽ ᇱ = ߛ ᇱ = 0	 to 

obtain the frequency response equation for the steady-state solution: 
 22 2

2 2 2 21 2
1 2 02 2 2

0

(3 )1 1 13 ( 2 2 )
4 2 2(1 ) 2(1 )

F Fa F F
a

 
   

  

              

 (26) 
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Fig. 6:  Frequency response at the combination resonance (Ωଵ ≈
૚
૞
߱଴	, Ωଶ ≈

૛
૞
߱଴	) for the monostable mode 

with different nonlinear stiffness coefficients  

Fig. 6 presents the frequency response corresponding to homogeneous part of the response at the 
combination resonance for the monostable mode with different nonlinear coefficients. It is 
observed that the combination resonance results in a considerable increase in the response 
amplitude. The value of the response amplitude increases near the combination resonance leading 
to enhance energy harvester performance. The response amplitude is equal to 0.54 for 0.05   
and 4  . Moreover, it is seen that the maximum amplitude increases by increasing the nonlinear 
stiffness coefficient. Therefore, the energy harvested in this case increases with the coefficient of 
the nonlinear term.   

The displacement and the output voltage are depicted versus time in Fig. 7 for combination 
resonance with Ω1

ଵ
ହ
ω0 , Ω2 

ଶ
ହ
ω0, f1 = 0.5 and  f2 = 0.5 . Both numerical and perturbation solutions 

are employed to plot Fig. 5.  It is found out that the perturbation solution is capable of accurate 
prediction of the steady-state response. It is noted that when the beam is excited through two 
frequencies Ωଵ ≈

૚
૞
߱଴	and Ωଶ ≈

૛
૞
߱଴	 separately, the equivalent RMS value for the output voltage 

is 0.2553. By applying two excitations at the same time, the combination resonance occurs and the 
RMS value of the output voltage is found to be 0.2986.  

 

3.3.Simultaneous resonance  
When the system is excited with a multi-frequency excitation, depending on the value of excitation 
frequencies and fundamental frequency of the system more than one resonance might occur 
simultaneously. For instance, both subharmonic and superharmonic resonances can occur 
simultaneously or both superharmonic and combination resonances may occur simultaneously [16] 
. For a two-frequency excitation, secondary resonances that may take place are: 

 
0 1 0 23 3or      (27) 

 
0 1 0 2

1 1
3 3

or      (28) 
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0 2 1 0 1 22 2or         (29) 

 
0 2 12     (30) 

A close examination of Eqs. (27) through (30) reveals that the only possible simultaneous 
resonances are:  

 
2 1 09 3     (31) 

 
2 1 03    (32) 

 
2 1 0

1
3
    (33) 

 
2 1 0

55
3
     (34) 

 
 

Fig. 7: Time history for the combination resonance (Ωଵ ≈
૚
૞
߱଴	, Ωଶ ≈

૛
૞
߱଴	) (a) displacement and (b) voltage 
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2 1 0

77
3
     (35) 

 
2 1 0

22
3
     (36) 

 
2 1 0

7 7
3

     (37) 

 
2 1 0

5 5
3

     

 

(38) 

The case of simultaneous resonance given by Eq. (36) in which the superharmonic resonance and 
a combination resonance occur simultaneously is considered here for numerical simulations. To 

investigate this case, two detuning parameters 1 and 2  are introduced as: 

 
2 0 1

3
2

     
(39-a) 

 
1 0 23      (39-b) 

 

Then, 1 0T  and 2 0T are rewritten in the following form: 
 
 

1 0 0 1 0 0 0 1 1
1 1 1( )
3 3 3

T T T T         (40-a) 

 
2 0 0 0 1 0 0 0 2 1

2 2 2 2
3 3 3 3

T T T T T         (40-b) 

The modulation equation is determined by starting from Eq. (13) and employing the same 
procedure, performed for combination resonance to eliminate troublesome terms: 

 2 1 1
1 1

4 1( )2 2 3 21 3 3
0 1 0 1 1 1 1 2 1 1 1 22 ( ) 3 ( 2 2 ) 3 0

i Ti TAii A A A A F F A F e F F e
i

     


        


 (41) 

Introducing the polar form 1
1
2

iA ae   and substituting it into in Eq. (41) result in the following 

equations: 

 

 2 3 2
0 1 1 1 1 2 2 1 12

4 1sin( ) 3 sin(( ) )
2(1 ) 3 3

aa a F T F F T         


        


 (42-a) 
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 2 2 2 3 2
0 1 2 1 1 1 1 2 2 1 12

3 1 4 1( 2 2 ) cos( ) 3 cos(( ) )
2 4 2(1 ) 3 3

aa a a F F F T F F T
         


         


 (42-b) 

The steady-state motion exists if and only if both 1 1T   and 
2 1 1

4 1( )
3 3

T     are constant which 

implies: 

 
1 2     (43) 

Substituting Eq. (43) into equation (42-a) and (42-b), the following frequency-response equation 
is determined for the steady-state response: 

 
23 2 2

2 2 2 21 1 2
1 2 02 2 2

0

( 3 )1 3 1( 2 2 )
2 4 2(1 ) 2(1 )

b F F Fa F F
a

     
  

              
 

(44) 

 

Fig. 8: Frequency response at the simultaneous resonance (Ωଵ ≈
૚
૜
߱଴	, Ωଶ ≈

૛
૜
߱଴	) for the monostable mode with 

different nonlinear stiffness coefficients 

Fig. 8 shows the frequency-response curves corresponding to the homogeneous part of the 
response at the simultaneous resonance for the monostable mode with different nonlinear 
coefficients. It is observed that the amplitude of the response at the simultaneous resonance is 
much greater than those of the superharmonic resonance and the combination resonance. Similar 
to supraharmonic and combination resonances, the amount of harvested energy increases with the 
nonlinear-term coefficient. Comparing Figs. (2), (4) and (6), we observe that the response 
amplitude obtained form the simultaneous resonance is larger than those of super harmonic 
resonance and the combination resonance. For 0.05  , maximum values of the response 
amplitude are 0.184, 0.543 and 1.925 , respectively for the superharmonic resonance, the combination 
resonance and the simultaneous resonance. 
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Fig. 9:Time history for the simultaneous resonance (Ω1  	ଵ

ଷ
ω0 and Ω2  	ଶ

ଷ
ω0): (a) displacement and (b) voltage  

 

Fig. 9 presents time histories of the displacement and the harvested voltage for simultaneous 
resonance when Ω1 	ଵଷω0 and Ω2 	ଶଷω0. For this case, excitation amplitudes are assumed to be f1 

= 0.5 and  f2 = 0.5. The RMS voltage is equal to 0.5137 which is 2.57 times the voltage harvested 
at the superharmonic resonance (Ω1

ଵ
ଷ
ω0 ).  

Table 2 summarizes the amount of RMS and maximum voltage for all cases considered in the 
present investigation. As seen in the table, the amount of output voltage is significantly higher for 
simultaneous and combination resonances (all values are nondimensional). 
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Table 2: Normalized output voltage  
Case studies Normalized 

RMS voltage 
(perturbation)   

Normalized RMS 
voltage (Runge–Kutta)  

Normalized 
maximum voltage 

(perturbation)   

Normalized 
maximum voltage 

(Runge–Kutta)   

Superharmonic resonance  
Ω1   ଵ

ଷ
ω0 

0.1998 0.1975 0.3276 0.3283 

Combination resonance     
Ω1   ଵ

ହ
ω0, Ω2   ଶ

ହ
ω0 0.2986 0.2951 0.6140 0.5580 

Simultaneous resonance    
Ω1   ଵ

ଷ
ω0 , Ω2   ଶ

ଷ
ω0 0.5137 0.5082 1.0071 0.9364 

 
Using parameters given by references [19]  and [25], the actual harvested voltage and maximum 
power are obtained for each case. Table 3 shows the amount of actual voltage and power for 
superharmonic, combination and simultaneous resonances. 

 

Table 3: Actual output voltage with perturbation method 
Case studies RMS voltage(V)  Maximum voltage(V) Maximum power(mW) 

Superharmonic resonance  
Ω1   ଵ

ଷ
ω0 3.5404 5.8050 3.3698 

Combination resonance     
Ω1   ଵ

ହ
ω0, Ω2   ଶ

ହ
ω0 5.2912 10.8800 11.8374 

Simultaneous resonance    
Ω1   ଵ

ଷ
ω0 , Ω2   ଶ

ଷ
ω0 9.1027 17.8458 31.8472 

 

4. Conclusions  
In the present research, the nonlinear piezomagnetoelastic energy harvesting device has been 
studied. We have assumed that the piezomagnetoelastic configuration is excited with a multi-
frequency harmonic excitation. An analytical solution to the nonlinear differential equations 
governing the system dynamics has been developed using the method of multiple scales. The 
accuracy of the method of multiple scales then verified by a numerical solution. The cantilever tip 
deflection and the output power have been determined for a few numerical examples at 
superharmonic, combination and simultaneous resonances. The frequency-response curves 
associated with the homogeneous part of the response have been plotted for aforementioned 
resonances. The present study implies that for superharmonic, combination and simultaneous 
resonances, the amplitude of the homogeneous part of the response has significant non-zero values 
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for a rather wide range of the frequency band. Therefore, more amount of energy is harvested. 
Numerical studies conducted throughout the paper show that under similar conditions, a higher 
amount of energy is harvested in a multi-frequency excitation rather than a single-frequency 
excitation. In addition, it is found out that simultaneous and combinations resonances generate 
more power compared to the superharmonic resonance. 
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