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This paper presents the effect of distance and dimensions of magnets on 
chaotic behavior and voltage level of a vibratory piezo-magneto-elastic 
bimorph energy harvesting system. The bimorph model comprises two 
piezoelectric layers on a cantilever base structure with one tip magnet as 
well as two external magnets. The mathematical model is extracted by 
using distributed model. The validity of the extracted model verified by 
previously published experimental results. In order to study the nonlinear 
dynamic of the bimorph, bifurcation diagram, phase plane portrait, time 
history response, Poincare map, power spectra diagram, and maximum 
Lyapunov exponents are used. In the bifurcation diagrams, the control 
parameters are the distances and dimensions of the magnets. It is shown 
that in the specific region of the control parameters, the sub-harmonic or 
super-harmonic behavior has minimum harvested voltage and irregular 
regions has maximum voltage. Also specific dimensions of tip magnet can 
influence greatly the dynamic behavior as well as output voltage. So these 
obtained results can give good insights about parameters identification and 
realization of the nonlinear behavior to reach the broadband higher 
harvested voltage of the system.  
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1. Introduction 
In two current decades the energy harvesting systems that convert a natural ambient energy to 
electricity has been an attractive research area. Energy harvesting systems mainly rely on the 
physics of piezoelectric materials and electromagnetic induction to convert ambient mechanical 
energy to electrical energy. There are various methods and applications for energy harvesting 
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systems. Some of the significant applications include mechanical impact [1], drilling operations 
in deep and ultra-deep wells[2], micro-electro-mechanical sensors [3], velocity amplification in 
electromagnetic shock absorbers[4, 5], aero elastic [6] and other applications[7-9], that are 
introduced in references. Among these, the vibratory energy harvesting systems has been 
significant research area, due to its various applications and scientific challenges. The main 
purpose in this way is to supply the required electrical energy for various requirements by using 
the vibration energy of the environment. There are three methods to convert the vibrations to 
electrical energy; that are the electrostatic, the electromagnetic [10] and the piezoelectric 
transductions [11]. In recent years, the piezoelectric transduction has the greatest attention. 
Usually the vibratory piezoelectric energy harvesters are in the form of unimorph and bimorph 
cantilever beams configuration. The main structure of the harvester is located on a vibrating base 
and the dynamic strain induced in piezoelectric layers results in an alternate voltage across their 
electrodes. Also, piezo-magneto-elastic configuration over piezoelastic configuration is 
preferred, due to its higher output voltage in all excitation frequencies except resonant frequency. 

However, appropriate mathematical model of the vibratory energy harvesting systems is a main 
challenging issue. Proper mathematical model that realize the physical characteristics, can result 
in reliable responses in the simulation process. In the early mathematical models, lumped 
parameter model with a one degree of freedom (d.o.f) is used [12, 13] to investigate the system 
dynamic behavior. Although the lumped model gives some initial knowledge into the problem, 
but it is an approximate model and it lacks some important aspects such as the mode shapes and 
exact strain distribution and their effects on electric response of the real physical system. The 
Rayleigh-Ritz model [3, 14, 15] is as an improved modeling approach, gives a discretized model 
of the distributed system that has a more exact approximation compared to lumped modeling 
with one d.o.f; but it is more computationally expensive than analytical solution. The analytical 
methods based on distributed electromechanical model and experimental verifications [16-18] 
and finite element [19, 20] simulations are given as accurate models. Zhao et al.[21]  presented 
the modeling approach based on a distributed-parameter electro-elastic formulation to ensure that 
the effects of higher vibration modes are included.   

Some works focused on exploiting the mechanical nonlinearities in vibratory energy harvesters 
and modifying the linear models to improve the broadband energy harvesting performance. 
Stanton et al.[22] show that, proper liability of nonlinearities in the physical models can be used 
to effectively capture the experimental observed responses. Also Abdelkefi et al. [23] developed 
a global nonlinear distributed model of a piezoelectric energy harvester with parametric 
excitation and indicate that the nonlinear distributed model by considering the first three modes 
has better response than the lumped-parameter method for designing the energy harvester. 
Analysis and simulations have been performed by Ferrari et al.[24, 25] showed that a higher 
amount of energy extracted from nonlinear converter in comparison to a linear one and nonlinear 
bi-stable harvester has better performances with wideband excitation in comparison to the linear 
system.  

In the nonlinear energy harvesters, increasing the performance and enhancement of frequency 
bandwidth is the other research issue has been focused by some researchers [26-34].   
In some researches, the magnet forces have used for improving efficiency of the energy 
harvester. Cao et al.[35] show by experimental test and numerical analysis that the lumped 
parameters equations with identified polynomials for magnetic force could sufficiently describe 
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the specialties of the nonlinear energy harvester. Stanton et al. [22] derived a full nonlinear 
model with an analytical magnet formulation and proper modal expressions to account for 
discontinuous piezoelectric laminates. Their results showed that proper separation distance of the 
magnets could be determined by studying the magnet spacing as a bifurcation parameter. Caruso 
et al. [36] proposed an adaptive electromagnetic energy harvester that comprises a vibrating mass 
an electromagnetic transducer and resonant resistive– capacitive– inductive electric circuit for 
increase its effective bandwidth. Firoozy et al.[37] investigated the dynamic behavior of the uni-
morph piezoelectric beam with tip magnets. Influence of some parameters on behavior of system 
and output power has been studied. Yildirim et al. [38, 39] studied effect of restoring-
electromagnetic couplings on the frequency bandwidth.  

In the nonlinear systems, the chaos is a phenomenon that can be occurred in some conditions. By 
including the chaotic behavior as a favorable property, small disturbances can change the 
behavior of the system exceedingly. So by this property one can improve the dynamic response 
of the energy harvesters. Geiyer and Kauffman[40] showed that the bandwidth of power output 
can increase by inducing chaotic behaviors and applying the low power controller. Thereby, by 
handling the motion to a chaotic attractor, even excitations with single frequency can results in 
an infinite number of periodic orbits that theoretically can be stabilized by using small controller 
inputs. 

However, literature reviews showed that some researches[10, 22, 27, 28, 30] have been 
developed to exploit chaotic behaviors in the energy harvesting systems but many aspects of this 
phenomenon still need to investigation precisely. The main contribution of this paper is nonlinear 
analysis of a typical piezo-magneto-elastic bimorph energy harvesting system based on dynamic 
model derived by the   

2. Mathematical modeling of piezo-magneto-elastic bimorph 
As shown in Fig. 1, the proposed system is including of a bimorph cantilever and three magnets, 
where the one magnet is attached to the tip of the beam, and two external magnets are connected 
on a fixed frame of the system. The magnetization of the tip magnet is in negative vertical 
direction, and the magnetizations of two external magnets are in positive vertical direction; so, it 
can result in magnetic force and moment on the beam’s tip. This magnetic effect can be defined 
as a relative positions of the three magnets, which specified by two distances: (1) the separation 
distance xd  between the external magnets and tip magnet and (2) the gap distance between 
external magnets, zd . 

 
Fig. 1. Schematic of a typical piezo-magneto-elastic bimorph energy harvesting system. 
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The displacement vector of beam element can be written as [11] 

 r zw w p i k  (1) 

where ( , )w w x t  is the lateral displacement and z  is the vertical distance from the beam neutral 
axis.  

The velocity vector of the beam element is 

  bzw w z   p i k     (2) 

where bz is the base velocity; the dot symbol ( )
.

 and the prime symbol  '  define differentiation 
with respect to time and displacement x, respectively. The kinetic energy of the bimorph beam 
can be obtained by  

 
1 2

1 2

21 1 1 1 1
2 2 2 2 2

s p p

T T T T
s s p p p p M M M

V V V

T dV dV dV M I w         p p p p p p p p          
(3) 

where the subscript ‘s’ is for the beam substructure; the subscript ‘p’ is for the piezoelectric 
layers such that ‘ 1p ’ and ‘ 2p ’ denote the lower and upper piezoelectric layers, respectively; the 
subscript ‘M’ is for the tip magnet. Also, ( , )i i s p   is the mass density, M , MI and Mp are the 
mass, the moment of inertia and the velocity vector of  the tip magnet, respectively. The axial 
strain component can be expressed as 

  r
xx zw zw

x x
        
 
p i  (4) 

By Hooke’s law the axial stress of the substructure is given as  

 ( )s
xx s xx sE E zw      (5) 

where sE is the beam Young modules. 

If the piezoelectric layer's behavior is modeled as a thin beam on the basis of the Euler–Bernoulli 
beam theory, the components of stress can be regarded as the one-dimensional bending stress. 
Therefore, the stress–electric displacement in the reduced form constitutive equations for a 
mentioned above beam is [11]  

 31 3 31 3( )p
xx p xx pE e E E zw e E        (6) 

where pE is the piezoelectric layer modulus of elasticity; 31e is the stress constant of 
piezoelectric. The electric field 3E  is given in terms of the output voltage for the bimorph 
piezoelectric layer[11] as 

 
3

( )
2 P

v tE
h


  (7) 

where )(tv is the voltage between the electrodes and Ph is the piezoelectric layers thickness. 
Also, the bimorph potential energy is given by 



H. Mohammad Khanlo et al. / Journal of Theoretical and Applied Vibration and Acoustics 4(1) 37-64 (2018) 

41 
 

 
1 2

1 2

2
31 3 31 3

1 1 1( ) ( )
2 2 2

s p p

s xx s p xx xx p p xx xx p
V V V

U E dV E e E dV E e E dV             
(8) 

The internal electrical energy of the piezoelectric layers is obtained as 
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1 2
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1 2

1 2

3 31 33 3 3 31 33 3

1 1
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1 1( ) ( )
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p p

p p

e e e
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 

 

       

 

 

E D E D  

(9) 

where E is the vector of electric field and D is the vector of electric displacement (dielectric) that 
are defined as 
  

 
3

3

0 0

0 0

T

T

E

D





E

D
 (10) 

where 3 31 33 3
s

xxD e E    ; 33
s is the permittivity component at constant strain with the plane 

stress assumption for a beam. 

When the base of the bimorph cantilever beam is harmonically excited, the beam deforms and 
oscillates, and so the tip magnet to have a tendency to travel in the field of external magnets [41]. 
Consequently, we need to first determine the magnetic flux density generated by the two external 
magnets. Since the magnet’s dimensions used in this work are small compare to the field’s 
dimensions, the magnets are modeled as point dipoles, [22, 42]. So the magnetic force and 
moment can be calculated in usual form. The thin rectangular shaped tip magnetization is used 
here and linear/saturated magnetization model is applied[41, 43]. The following assumptions are 
made here: 

1- The hysteresis effect of magnetization is neglected.  
2. Since the size of the tip magnet is small, so the magnetic characteristics within the body of tip 
magnet are uniform.  

After determining of the magnetization of the tip magnet by exerting an external field, the 
magnetic force and moment on tip magnet can obtain in usual method for permanent magnets. In 
this work, the tip magnet and two external magnets are modeled as a charge model, where a 
magnet is reduced to a distribution of equivalent magnetic charges and also point dipole 
approximation is invoked for all magnets[44].  

 
Fig. 2 Schematic of the tip magnet and two external magnets. 
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Based on schematic shown in Fig. 2 and aforementioned assumptions, the magnetic forces and 
moment are obtained using a series of derivation process[45]  

 
2 2

( )
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( ) ( , , ) 1.5
, , 1, 2
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

  (11) 
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
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
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, , 1, 2

( 1)
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
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


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

  (13) 

 ( , , ) ( 1) ( 1) ( 1)i j k i j k
h h e td d h h       (14) 

 
t

kk
t hh )1()(   (15) 

 ( ) ( )k k
x t L xX h w d    (16) 

 ( , , ) ( , , )i j k i j k
z t t L hX w l w d    (17) 

 ( , , ) ( ) ( , , ) ( ) ( )i j k k i j k k k
y t t L z t L t xR l h w X l w h X             (18) 

where 
2

z
h

dd   and 0  is the free space permeability; tM and eM are the tip magnet and two 

external magnets total surface charges, respectively; th  and eh  are the tip magnet and the 
external magnets half-heights, respectively. tl  is the tip magnet length, tw  is the tip magnet 
lateral displacements and Lw  is the tip magnet slope with respect to horizontal axis.  

The non-conservative mechanical force and electric charge components are as a generalized 
force that be considered by virtual work as 

 ( )
znc E M L M LW f t v f w w         (19) 

where 
0

( )
t

E
L

vf t dt
R

  is the output electric charge of the piezoelectric layers; M and 
zMf are the 

magnetic moment and force, respectively. Also Lw and Lw are given as follows. 

 ( , )( , ),L L
x L

w x tw w L t w
x 

 


 (20) 

The ( )w x,t  is the mechanical domain distributed-parameter variable, and )(tv  is the electrical 
variable. In order to obtain the discretized differential equations of motion, we used assumed 
mode method. To this end, the following finite series is considered for ( , )w x t . 

 

1
( , ) ( ) ( )

n

j j
j

w x t x q t


  (21) 
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where   ( ) 1 cos (2 1) / (2 )j jx A j x L    is the admissible trial function which satisfy the 

essential boundary conditions, ( )jq t is the unknown generalized coordinate, and n is the modes 
number that considered for the solution.  

Using Eq. (21), the kinetic, the potential and the electric energies are given as  
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Eqs. (22) to (24) rewrite in terms of the matrices defined in Appendix (A) as  
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The Lagrange equations based on the extended Hamilton’s principle for electromechanical 
systems are given as 
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where EQ and FQ  are the output electric charge of the piezoelectric layers, the generalized 
forces, respectively.  
The discretized form of the partial differential equations of current electromechanical system are 
introduced as 

 32 ( ) ( )

1 0
2

zb M M

p T

L p

E z f L L

C vv
R h

     
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G q

 


 (29) 

where  1 2332
1

2
s

p pp
p

V VC
h
  is the equivalent capacitance of the bimorph beam. It should be noted 

that Eq. (31) is nonlinear, due to generalized forces of the system that arise from magnetic forces 
and moment. 

3. Nonlinear analysis 
In the continuous systems the number of assumed modes is more significance, so before 
conducting the main nonlinear analysis, the number of modes effects on frequencies is 
investigated. The obtained results have been illustrated in the table 1 

This analysis shows that, by increasing the number of modes the estimation of first frequency 
(50.25 Hz) has not been improved further. Since the exciting frequency of the current system is 
10 Hz, that is lower than the first frequency, so the nonlinear analysis conducted by choosing 
only one mode. However, if the exciting frequency is higher than the first frequency, there is 
needed to consider higher mode numbers. 
Before conducting the numerical analysis for proposed continuous model, the validity of model 
verified by previously published experimental results. The validity of bimorph, that composed of 
the main base structure and two upper and lower piezoelectric layers, is performed by the 
experimental result of reference [22]. The harvested steady state voltage versus amplitude of the 
exciting force for current model and the experimental result are being compared. As shown in 
Fig. 3(a), there is good accordance, especially in lower amplitudes (about 0.2 for current model), 
between two results. The validity of magnetic forces comprises the tip magnet and two external 
magnets of the current model are verified by the experimental result of reference [35]. The 
magnetic forces versus vertical displacement of tip magnet are plotted in Fig. 3(b) which reveals 
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the good accordance between the current model and the experimental result. So, it can be relying 
on the proposed dynamic model and equations of motion. 

Table 1: The effect of the number of modes on the first and second natural frequency 

 

(a) (b) 
Fig. 3 Dynamic model verification of (a) bimorph, (b) magnetic forces. 

 

The numerical analysis of the equations of motion, Eq. (31), is carried out by the forth-order 
Runge–Kutta numerical method in MATLAB software. For guarantee the steady state data to 
perform the nonlinear analysis, the first few hundred captured data’s of numerical analysis were 
neglected and the results of the next data’s were kept to carry out the numerical analysis. The 
energy harvesting system parameters used in the numerical study are shown in Table 2. The base 
acceleration is considered with the frequency 10Hz  and the amplitude 22 /m s  as the system 
excitation in all numerical simulations. The nonlinear analysis is conducted in two following 
cases: 

Number 

Of modes 

1Mode 2Mode 3Mode 4Mode 5Mode 6Mode 

first second first second first second first second first second first second 

Frequency 

(Hz) 

50
.2

5 

_ 50
.2

5 

44
5.

4 

50
.2

5 

42
5.

4 

50
.2

5 

40
0.

4 

50
.2

5 

39
5.

4 

50
.2

5 

39
0.

4 

Voltage 

FRF 

3.
67

 

_ 3.
64

 

38
.6

 

3.
75

 

29
.5

5 

3.
76

 

30
.2

5 

3.
78

 

36
.4

5 

0.
72

9 

11
.5
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3.1. Effect of external magnets distances  
To studying the nonlinear dynamic of the system by numerical methods, some identifying 
techniques are required. One of the main tools to analyze the nonlinear dynamic behavior of the 
systems is the bifurcation diagrams. The bifurcation diagram can be useful in detecting irregular 
regions (quasi-periodic or chaotic) of the system behavior under some parameters. In this case, 
the bifurcation diagrams of the system are obtained by changing the zd  and xd . 

Table2. Parameters value and description 
Parameters value Description 

100L mm  Beam Length 

6.4b mm  Beam Width 

0.14sh mm  Beam thickness 

39000 /s kg m   Beam mass density 

105sE Gpa  Beam Young’s modules 

0.265ph mm  Piezoelectric layers thickness 

37500 /p kg m   Piezoelectric layers Mass density 

2
31 16.6 /e C m   Piezoelectric constant 

33 25.55 /s nF m   Permittivity 

60.6pE Gpa  Piezoelectric layers Young’s modules 

37400 /M kg m   Mass density of the tip magnet 

7 2
0 4 10 /N A    Magnetic constant 

 
 

Fig. 4 illustrates the bifurcation diagrams of the bimorph beam tip displacement and harvested 
voltage versus gap distance zd between the two external magnets. The dominant dynamic 
behavior of system is the quasi-periodic on the broad region of the parameter changes. However, 
on some regions can be detected periodic or sub harmonic behaviors. Up to 0.137zd m  the 
beam tip displacements and harvested voltage are not considerable. At the gap distance 

0.138zd m  both the tip displacements and voltage begin to increase up to 0.177zd m . 
Hereafter, the tip displacement decrease gradually, but the voltage value has sudden lost. After 

0.178zd m  the tip displacement has some fluctuations up to the end of the region.  
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Fig. 4. Bifurcation diagrams (a) beam tip displacement, (b) voltage. 

By means of the bifurcations diagram, the overall nonlinear behavior for the system can be 
identified; but for detail analysis, there is need to other identifying techniques. So the other 
detection techniques such as time history, phase plane, Poincare map and power spectrum is used 
to confirm the captured behavior in the bifurcation diagrams. Fig. 5, exhibit the behavior of the 
system at 0.157zd m . The time history has two detectible amplitude and Poincare map has 
three points; also the power spectrum has an evident peak amplitude after main frequency, that 
confirm the super-harmonic motion with period three (3T). Fig. 6, shows the typical behavior of 
the harvesting system at 0.177zd m . When the phase plane show many crossing and loops that 
can be a sign of irregular, quasi-periodic or chaotic motion. Since the time history has some 
definite but not countable peak and Poincare map is closed curve as well as the power spectrum 
has some clear peaks, the system behavior is the quasi-periodic. It should be noted that in this 
case the dominant behavior in the irregular regions is quasi-periodic. 
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(a) (b) 

  
(c) (d) 

Fig. 5. (a) phase plane, (b) time history, (c) Poincare map, (d) power spectrum for 0.157zd m . 

  

(a) (b) 

Fig. 6. (a) phase plane, (b) time history, (c) Poincare map, (d) power spectrum at 0.177zd m . 
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(c) (d) 

Fig. 6. (a) phase plane, (b) time history, (c) Poincare map, (d) power spectrum at 0.177zd m .(Cont.) 

  
(a) (b) 

Fig. 7. Output voltage of energy harvesting system at (a) 0.157zd m , (b) 0.177zd m . 

In the energy harvesting system, increasing the output voltage is the main goal in this regard. Fig 
7 (a), shows the harvested voltage at 0.157zd m . In this case, the maximum output is 0.0152V . 
Fig 7 (b), shows the harvested voltage at 0.177zd m . In this case, the maximum output is 0.233V
These results show that, one can obtain higher voltage in the region [0.138 0.177]zd m � .  

As showed in all aforementioned results, in some regions there were sudden increment in beam 
tip displacements; that has need to more explanation. According to equation (31), the main 
contribution of generalized forces is related to magnetic forces. Based on equations (11) to (18), 
these forces related to the gap distance between two external magnets and the separation distance 
between the tip and external magnets as well as the tip magnet height and length. So, by 
changing these parameters, the generalized forces may be affected. Fig. 8 shows typical 
generalized force versus magnet parameters.       
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Fig. 8. Generalized force versus magnet gap distance zd . 

As illustrated in Fig. 8, the generalized forces mean value reach to 8.803 N  at 0.177zd m . 
This typical result confirms the significance of the magnetic force and moment on behavior of 
the system.  

Also, the effect of exciting frequency on the beam tip displacement and the harvested voltage is 
investigated as a case study in Fig. 9. As depicted, the inherent frequency of the bimorph 
increases by decreasing the separation distance between two external magnets. Moreover, the 
higher voltage is harvested at small separation distances between the external magnets with 
higher exciting frequencies.  

(a) (b) 
Fig. 9. Waterfall diagram: (a) amplitude, (b) voltage, versus magnets gap distance and frequency. 
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Fig. 10. Bifurcation diagrams (a) beam tip displacement, (b) voltage. 

Fig. 10 shows the bifurcation diagrams of the beam tip displacement and harvested voltage 
versus xd , the distance between tip and the external magnets. At 0.05xd m  the harvested 
voltage reach the maximum value about 0.1V . In the small region of xd , the tip displacement 
begin to increase, simultaneously the voltage decreases. Up to 0.058xd m  both the tip 
displacement and the voltage are decreases and the dynamic behavior is still chaotic. Hereafter, 
by increasing the separation distance, both the tip displacement and voltage values are not show 
considerable change. It should be noted that in the first region of the bifurcation diagram, Fig. 
9(a), the behavior of the system is irregular. To confirm that the captured behavior of the system 
in irregular region is the quasi-periodic or chaotic; there is needs to considering the other 
identifying techniques.  
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(a) (b) 

(c) (d) 
Fig. 11. (a) phase plane, (b) time history, (c) Poincare map, (d) power spectrum for 0.05xd m  

Fig.11 shows the behavior of the system at 0.05xd m . As shown, the first region of bifurcation 
diagram is irregular. As depicted in Fig. 11, the phase plane shows many crossing and loops in 
some areas that confirms the chaotic behavior. The time history has not detectible amplitude and 
Poincare map does not form a closed curve and also the power spectrum has broad band nature, 
which confirms the chaotic behavior.  Also Fig. 12, shows the chaotic behavior at 0.056xd m , 
that is a typical point of high tip displacement in first region with lower voltage. Then, the 
simulation results with other points in the first region, 0.05 0.058xd m m � , show that the 
dominant dynamic behavior of the system is chaotic for this case.  However, one can capture the 
other dynamic behavior such as the sub-harmonic, periodic and quasi-periodic motions. 
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(a) (b) 

(c) (d) 
Fig. 12. (a) phase plane, (b) time history, (c) Poincare map, (d) power spectrum for 0.056xd m . 

The MLE also provide a useful means to detecting the chaotic behavior. By the MLE one can 
determine exponentially the average expansion or contraction rate of the deviation from initial 

direction (0)y  on a trajectory of the system, which is given by 
( )1lim ln( )
(0)i t

t
t

 
y
y

, where the 

symbol denotes a vector norm and i  is the Lyapunov exponent (LE). By this definition, if 
any system contains at least one positive LE is defined as chaotic system. Fig 13 shows the MLE 
at two typical parameters. The maximum of LE is positive, that confirms the chaotic behavior at 
respective parameters. 
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(a) (b) 

Fig. 13. MLE (maximum Lyapunov exponents) at (a) 0.05xd m , (b) 0.056xd m . 

 

  
(a) (b) 

Fig. 14 .Output voltage of energy harvesting system at (a) 0.05xd m , (b) 0.056xd m .  

Fig 14 (a), shows the harvested voltage at 0.05xd m . In this case, the maximum output is 
0.1048V . Fig 14 (b), shows the harvested voltage at 0.056xd m . In this case, the maximum 
output is 0.0237V . However, the former point has very higher voltage than the second point. So 
by proper choosing the magnet gap distance, one can reach to optimum values of voltage in the 
small tip displacement. 

3.2 .Effect of tip magnet dimensions  
In this case, the bifurcation diagrams are obtained by changing the dimension of the tip magnet, 
height th and length tL . 
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Fig. 15. Bifurcation diagrams (a) beam tip displacement, (b) voltage. 

 
Fig. 15 shows the bifurcation diagram for the beam tip displacement and harvested voltage 
versus tip magnet height th . By increasing the magnet height up to 0.006th m , the tip 
displacement has not any considerable change and harvested voltage is low. Hereafter, both the 
tip displacement and the voltage begin to increasing up to 0.0078th m . In this point, the 
harvested voltage is about 0.032V . At 0.008th m , there is a sudden change in displacement of 
the beam tip and the voltage. At this point, the harvested voltage value reach to 0.138V . 
Hereafter, both the tip displacement and voltage begin to decreasing; that maintained up to 

0.0122th m . In the end region of the bifurcation diagram, the tip displacements are very low 
and the generated voltage is not considerable. Dynamic behavior of the system in this case shows 
dominant the quasi-periodic behavior with the sub- or super-harmonic behaviors in some points. 
Dynamics of the system in this case shows dominant the quasi-periodic behavior with the sub- or 
super-harmonic behaviors at some points. 
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(a) (b) 

  
(c) (d) 

Fig. 16. (a) phase plane, (b) time history, (c) Poincare map, (d) power spectrum for 0.0056th m .  

Fig. 16 illustrates the behavior of the system at 0.0056th m . At this value of th , the phase 
plane diagram is shown as definite closed circle. The time history has five detectible amplitude 
and Poincare map comprises five separate bands; also the power spectra shows some evident 
peaks amplitude before and after the exciting frequency (i.e. 2, 6; 14, 18; 22, 26), that confirm 
the sub-harmonic behavior with period five (5T). As shown in Fig. 17, at 0.0078th m , the 
phase plane show some crossing and loops that can be a sign of irregular motion. Since the time 
history has some definite peaks and Poincare map is closed curve, the power spectrum has some 
clear peaks around the main frequencies, the system behavior is quasi-periodic. 



H. Mohammad Khanlo et al. / Journal of Theoretical and Applied Vibration and Acoustics 4(1) 37-64 (2018) 

57 
 

  
(a) (b) 

  
(c) (d) 

Fig. 17. (a) phase plane, (b) time history, (c) Poincare map, (d) power spectrum for 0.0078th m .   

  
(a) (b) 

Fig. 18. Output voltage of energy harvesting system at (a) 0.0056th m , (b) 0.008th m . 
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Fig 18 (a), shows the harvested voltage at 0.0056th m , where the maximum output voltage is 
0.0131V  and the maximum tip displacement is 0.15cm . Fig 18 (b), shows the harvested voltage at 

0.008th m , where the maximum output is 0.163V . These results show that there is not a wide 
region for increasing the harvested voltage when choosing the tip magnet height as a bifurcation 
parameter. However, there are some definite points for magnet height that results in higher 
voltages. 

 
Fig. 19. Generalized force versus tip magnet height. 

 

As illustrated in Fig. 19, for the tip magnet height 0.0082th m , where the tip displacement is 
high, the generalized forces mean value is about 2.472 N  and before it, mean value of these 
forces is low. As before, this typical result also confirms the significance of the magnetic force 
and moment on behavior of the system.     

Fig. 20 shows the bifurcation diagrams of the bimorph beam tip displacement and harvested 
voltage versus tip magnet length tL . In this case, by increasing the tip magnet length, both the tip 
displacement and the voltage are gradually increases up to 0.006tL m , where the harvested 
voltage reach to 0.126V . At 0.0062tL m , the tip displacement suddenly reversed but the 
generated voltage still has increasing nature. After this point, the harvested voltage is increases 
again up to 0.0066tL m  and reach to maximum value 0.217V . At 0.0068tL m , there is a 
sudden decrease in the tip displacement and voltage. Hereafter, by changing tL , both the tip 
displacement and voltage gradually decreases. In this case, the system behavior is contained 
irregular motion (quasi-periodic or chaotic) and the sub-harmonic motion in some points. As 
know, bifurcation diagrams give overall insight to system behavior. For detail information about 
the dynamic behavior and verifying the captured results by bifurcation diagram, other identifying 
techniques should be used. The following figures show the results in some typical points.  
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Fig. 20. Bifurcation diagram (a) beam tip displacement, (b) voltage. 

Fig. 21 illustrates a typical behavior of the system at 0.0098tL m . The time history has six 
detectible amplitude and Poincare section comprises six single points; also the power spectrum 
has an evident peak amplitude before (at 8.333  and 6.667 ) the main frequency, that confirms the 
sub-harmonic motion with period six (6T). Also Fig. 22 shows the behavior of the system at

0.0134tL m , where the behavior of the system is sub-harmonic. The phase plane shows some 
finite closed curves that reveal the harmonic motion. Since the time history has four detectible 
amplitudes and the Poincare map is comprising four single points and also the power spectrum 
has clear peaks before main frequency at 7.5Hz and 5Hz, the system behavior is the sub-
harmonic with period four (4T). The analysis with other points shows that the dominant behavior 
is quasi-periodic motion in this case. 

 
 

(a) (b) 

Fig. 21. (a) phase plane, (b) time history, (c) Poincare map, (d) power spectrum for 0.0098tL m . 
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(c) (d) 

Fig. 21. (a) phase plane, (b) time history, (c) Poincare map, (d) power spectrum for 0.0098tL m .(Cont.) 

Finally, the harvested voltage in the end of the first region and begins of second region illustrated 
in Fig 23. At 0.0066tL m , the harvested voltage is 0.263V . At 0.0068tL m , the maximum 
output voltage is 0.284V . However, the maximum output voltage has been occurred in the end 
of the first and begins of the second regions of the bifurcation diagram. So, one can use suitable 
sections of two regions to reach the optimum energy value.  

  
(a) (b) 

  
(c) (d) 

Fig. 22. (a) phase plane, (b) time history, (c) Poincare map, (d) power spectrum for 0.0134tL m . 
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Fig. 23. Output voltage of energy harvesting system at (a) 0.0066tL m , (b) 0.0068tL m . 

4. Conclusions 
In this article, the influence of distances and dimensions of magnets on the nonlinear behavior 
and voltage level of a typical piezo-magneto-elastic bimorph was studied. The partial differential 
equations of the motion were discretizing by using the assumed mode method. The number of 
modes effects analysis showed that for exciting frequencies lower than the first frequency of the 
system, only one assumed mode is to be sufficient for the numerical analysis. Also, the validity 
of the extracted model verified by previously published experimental results. The bifurcation 
diagrams were used to detect the nonlinear behaviors and the obtained results confirmed by using 
phase plane portrait, time history diagram, Poincare map, power spectra and Lyapunov 
exponents. The simulation results showed that by changing of the gap distance between the 
external magnets, the dominant nonlinear behavior of the system in irregular regions was quasi 
periodic. Also, by changing the separation distance of the tip magnet and the external magnets, 
the dominant nonlinear behavior of the system in irregular regions was chaotic. However, the 
effect of the separation distance of the tip and the external magnets on the output voltage is more 
than the effect of the external magnets gap distance. It can be due to this fact that, by changing 
the separation distance, the effects of magnetic field on beam tip deflections is more than the 
external magnets gab distance. Moreover, the effect of the tip magnet dimension on the nonlinear 
behavior of the bimorph was studied and the results showed that the dominant behavior of the 
bimorph in irregular regions was quasi periodic with relatively higher harvested voltage. In 
general, this system with the sub harmonic or super harmonic behaviors has minimum harvested 
voltage, whereas the irregular regions (chaotic or quasi-periodic) behaviors have maximum 
harvested voltage.  

Appendix (A): Coefficients of Eqs. (25) – (27) 
Based on the kinetic energy, Eq. (25), the following terms are defined 
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Therefore, the elements of matrix M and vector H are given as 
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Based on the strain potential energy, Eq. (26), the following terms are defined 
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Therefore, the elements of matrix K and vector G are given as  
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Also, the virtual work of the electromechanical system, Eq. (19), is written as follows 
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Therefore, the generalized forces and the output electric charge of the piezoelectric layers are 
given as 
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