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Bimorph piezoelectric cantilevered (BPC) actuators have recently 
received a great deal of attention in a variety of micro-
electromechanical systems (MEMS) applications. Dynamic 
modeling of such actuators needs to be improved in order to enhance 
the control performance. Previous works have usually taken 
transverse vibration into account without considering longitudinal 
vibration. This paper presents a comprehensive modeling for a set of 
transverse and longitudinal vibration equations for piezoelectric 
cantilevered actuators. In addition, dynamic behavior and exact non-
minimum phase region along BPC is derived by analyzing first three 
vibrational modes. A simulation study is propounded to better 
analyze the system dynamic behavior. Finally, an experimental setup 
is developed to verify the proposed dynamic model. The modal 
frequency response of the system for the first three modes, obtained 
from the proposed model, is compared with those obtained from the 
experiment and a good consistency between them confirms the 
validity of the proposed dynamic model. 
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1. Introduction 
Microcantilevers and cantilevers have emerged as efficacious tools for many nanomechanical 
sensing and actuating applications due to their simple structures and good maneuverability for 
transverse deflection. More specifically, piezoelectrically actuated micro-cantilevers such as 
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unimorph and bimorph piezoelectric cantilevers (BPC) have recently received considerable 
attention since they have unique features such as high natural frequency, fine working resolution 
and proper time response [1, 2], while also possessing self-sensing ability. 

Applications of BPC structures can expand to several nano/micromechanical instruments mainly 
divided into two categories. With respect to their actuating effect, BPC actuators have been 
utilized in micro-manipulation applications such as cell characterization [3] and micro-assembly 
[4]. In addition, owing to their sensing effect, BPC structures have been used as various types of 
sensors including position sensors [5], force sensors [6], scanning force microscopy [7]  and also 
energy harvester [8]. In dynamic mode of operation, a deep understanding of dynamic behavior 
of BPC actuator is essential, especially when it comes to choose an appropriate controller for real 
MEMS applications [9]. Several investigations have been conducted toward the subject with two 
main approaches; lumped and continuous modelling methods. 

Considering lumped dynamic modelling method, a mass, spring and damper are utilized to 
model the cantilever dynamic behavior. Although this method has shown to be compatible for 
modeling two degree-of-freedom piezoelectric actuators [10], it has many limitations and could 
only be valid for specific target point on actuator [10]. While hysteresis effect can be modeled in 
this method by a nonlinear function [11], this method still is inefficacious for two main reasons. 
Firstly, the effect of higher vibrational modes on output response is ignored. Secondly, the effect 
of altering target point on dynamic behavior is not considered. 

On the other hand, continuous dynamic modelling addresses the two drawbacks of lumped 
model. Bilgen et al. developed a model for dynamic behavior of a unimorph piezoelectric beam 
[12] which was improved to bimorph piezoelectric beam energy harvesters by Chen et al. [13]. 
Moreover, the dynamic model for BPC was considered based on Euler-Bernoulli and 
Timoshenko beam theory which pursue two main assumptions [14]. First, the effect of higher 
vibrational modes on the output dynamic behavior is neglected. Second, the dynamic model is 
considered to be linear which is because piezoelectric input voltage is assumed to be in a low-
amplitude order then the nonlinear hysteresis effect on output dynamic response is considered to 
be negligible. 

In some other works, effect of buffer layer and electrodes on output dynamic has been 
investigated [15]  as well as effect of excitation frequency and actuator geometry [14]. In 
addition, effect of fringing fields at free end of beam is shown not to be negligible [16] and it 
was investigated for control applications [17]. Moreover, hysteresis effect was first added to 
linear dynamic model as a disturbance by Yi et al. [18] and it was improved by Chao et al. [19]. 
In these works, effect of higher vibrational modes and effect of target point position on BPC 
dynamic behavior were not considered. Ghafarirad et al. investigated the effect of higher modes 
up to second mode and also proposed a safe minimum phase region along the BPC based on 
position of actuator target point [20]. Moreover, the shear vibration modes for piezo laminated 
structures have been investigated by Tahmasebi et al. [21].  

In this paper, the actuator transverse and longitudinal dynamic models have been analytically 
investigated. Furthermore, exact non-minimum phase region was extracted by analyzing the 
dynamic behavior of the system. Although in previous works the sufficient condition for non-
minimum phase region was proposed [20], extracting exact non-minimum phase region is one 
the novelties of this paper. To investigate the effect of higher vibrational modes on output 
behavior, first three modes were considered for dynamic modelling of the BPC actuator as a case 
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study. Finally, the efficiency and accuracy of the proposed model were evaluated based on 
simulation and experimental results and an appropriate consistency between them was observed. 

2. Transverse and longitudinal dynamic modeling 
The case study in the current work will be conducted on a bimorph piezoelectric cantilevered 
(BPC) actuators with a rectangular cross section. Consider a piezo-layered cantilever with two 
piezoelectric patches on its top and beneath surfaces and a metallic bulk at the middle, as 
depicted in Figure 1. 

 

 

 

Fig. 1: Configuration of a BPC actuator 

In order to model the dynamic behavior of the BPC actuator, it is assumed that the motion of 
BPC is governed by the Euler–Bernoulli theory, therefore shear deformation and rotary inertia 
terms are negligible. Based on this theory the dynamic behavior of a beam can be modeled as the 
following equations [22]: 

Longitudinal vibration 
௘ܣߩ 

߲ଶݑ
ଶݐ߲ =

∂ܰ
ݔ∂  (1) 

Transverse vibration 

௘ܣߩ 
߲ଶݓ
ଶݐ߲

=
߲ଶܯ
ଶݔ߲

−
∂
ݔ∂

൬ܰ
ݓ∂
ݔ∂
൰ (2) 

where ܣߩ௘		denotes equivalent mass per unit length, N, and M represent internal longitudinal 
force and moment, while ݑ  and ݓ represent displacement in x and z-direction, respectively. ߪଵ is 
stress in x-direction, along the beam’s length, and z denotes distance from neutral axis in vertical 
direction. Terms N and M can be obtained by integrating stress component over the beam’s cross 
section as below formulations: 

 ܰ = න 	σଵ  (3) 	ܣ݀

ܯ  = න 	z	σଵ  (4) 	ܣ݀

In addition, regarding the Euler–Bernoulli beam theory, strain could be considered as a function 
of both transverse deflection and longitudinal displacement as: 

 
ଵܵ =

ݑ∂
ݔ∂

− ݖ
߲ଶݓ
ଶݔ߲

 (5) 
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in which ܵଵ denotes strain in the ݔ-direction. In this regard, neutral axis lies on the mid-plane of 
the beam due to geometrical symmetry. 

For a piezoelectric material the stress formulation can be considered as [22]: 

ଵ,௣ߪ  = 	௣ܥ ଵܵ − ݁ଷଵ	ܧଷ (6) 

 ଷ represents electricܧ .௣ and ݁ଷଵ are elasticity modulus and piezoelectric constant, respectivelyܥ
field in z-direction. A linear distribution for the electric field along the piezoelectric layer 
thickness (ݐ௣) has been considered as [22]: 

ଷܧ  =
ଷܸ

௣ݐ
 (7) 

where ଷܸ denotes exterior voltage. It’s worth noticing that for a BPC actuator the polarization of 
the piezoelectric depends on the direction of the exterior electric field. For the BPC actuator 
configuration shown in Figure 1 the direction of electric field of the upper and lower 
piezoelectric layers oppose each other. Therefore, the redefinition of the stress relations could be 
as following equations: 

ଵ௣,௎ߪ  = 	௣ܥ ଵܵ − ݁ଷଵ	ܧଷ (8) 

ଵ௣,௅ߪ  = 	௣ܥ ଵܵ + ݁ଷଵ	ܧଷ (9) 

The subscripts U and L represent upper and lower piezoelectric layers, respectively. Moreover, 
according to stress-strain relation for the bulk of the beam explained by Hook’s law [23]: 

ଵ,௕ߪ  = 	௕ܥ ଵܵ (10) 

Subscripts p and b denote piezoelectric layers and beam bulk, respectively. Also ݐ௕ denotes 
beam’s bulk thickness. Note that the beam bulk and piezoelectric layers have same width which 
has been denoted by symbol ܻ. It is also worth mentioning the following relations regarding 
cross sectional area: 

 නܣ݀ݖ = න ݖܻ݀ݖ
௥

ି௥
= 0 න ݖଶܻ݀ݖ =

௕ଷݐ	ܻ

12

௧್
ଶ

ି௧್
ଶ

=   ௕ܫ

(11) 

 
න ݖଶܻ݀ݖ
ቀ
௧್
ଶ ା௧೛ቁ

௧್
ଶ

+න ݖଶܻ݀ݖ =
ܻ(൫2ݐ௣ + ௕൯ݐ

ଷ − (௕ଷݐ
12

= ௣ܫ

ି௧್
ଶ

ିቀ௧್ଶ ା௧೛ቁ
 

In order to complete the formulation of beam’s vibration, it is necessary to derive terms N and M 
as functions of displacement terms i.e. ݑ and ݓ. This is done by substituting equations (5) to (10) 
into (3) and (4) as followings: 

ܰ = න ௕ܥ 	 ଵܻܵ݀ݖ +න 	௣ܥ) ଵܵ − ݁ଷଵ	ܧଷ)ܻ݀ݖ
ቀ
௧್
ଶ ା௧೛ቁ

௧್
ଶ

+න ܵଵ	௣ܥ) + ݁ଷଵ	ܧଷ)
ି௧್
ଶ

ିቀ
௧್
ଶ ା௧೛ቁ

௧್
ଶ

ି௧್
ଶ

 ݖܻ݀

 
(12) 

 
 = ௕ܣ௕ܥ) + (௣ܣ௣ܥ

ݑ∂
∂x 
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ܯ = න ௕ܥݖ 	 ଵܻܵ݀ݖ +න ܵଵ	௣ܥ)ݖ − ݁ଷଵ	ܧଷ)ܻ݀ݖ

ቀ
௧್
ଶ ା௧೛ቁ

௧್
ଶ

+න 	௣ܥ)ݖ ଵܵ + ݁ଷଵ	ܧଷ)
ି௧್
ଶ

ିቀ௧್ଶ ା௧೛ቁ

௧್
ଶ

ି௧್
ଶ

 ݖܻ݀

(13) 
 = ௕ܫ௕ܥ)− + (௣ܫ௣ܥ

߲ଶݓ
ଶݔ߲ −

൫ݐ௕ + ௣൯ܻ݁ଷଵݐ ଷܸ(ݐ) 

Finally, the total internal longitudinal force and moment can be calculated as: 

 ܰ = ௘ܣܥ
ݑ߲
 (14) ݔ߲

ܯ  ௘ܫܥ−=
߲ଶݓ
ଶݔ߲ ௣ܯ− ଷܸ(ݐ)(15) (ݔ)ܩ 

where ܣܥ௘ and ܫܥ௘ are effective axial and bending rigidity, respectively, and can be expressed as 
௘ܣܥ = ௕ܣ௕ܥ + ௘ܫܥ  ௣  andܣ௣ܥ = ௕ܫ௕ܥ + ௣ܯ Aforementioned	.	௣ܫ௣ܥ ଷܸ(ݐ) refers to bending 
moment due to piezoelectric electromechanical reaction to external voltage where ܯ௣  

can be calculated as ܯ௣ = ൫ݐ௕ +  .௣൯ܻ݁ଷଵݐ

It should be noted that (ݔ)ܩ represents location of the piezoelectric patch along the beam. 
Considering the Figure 2, a general notation for this function is: (ݔ)ܩ = ݔ)ܪ − ݈ଵ) − ݔ)ܪ − ݈ଶ)  
where (ݔ)ܪ is the Heaviside function which is defined as: (ݔ)ܪ = ∫ ௫ݏ݀(ݏ)ߜ

଴ 	 or 	(ݔ)ߜ = డு(௫)
డ௫

  
where (ݔ)ߜ denotes the Dirac delta function [24]. ݈ଵ and ݈ଶ represent starting and ending point of 
the piezoelectric patch, respectively. In the current case study both the top and beneath 
piezoelectric layers lie on whole length of the beam therefore ݈ଵ = 0 and ݈ଶ =  could (ݔ)ܩ  thus  ܮ
be simplified as  (ݔ)ܩ = ݔ)ܪ− −   .(ܮ
Now, by substituting (14) and (15) into (1) and (2), assuming that geometrical and mechanical 
properties will remain constant along the beam, governing coupled longitudinal and transverse 
vibration equations of BPC would be: 

௘ܣߩ 
߲ଶݑ
ଶݐ߲ =

߲
ݔ߲ ௘ܣܥ)

ݑ∂
 (ݔ∂

(16) 

௘ܣߩ 
߲ଶݓ
ଶݐ߲ = −

߲ଶ

ଶݔ߲ ௘ܫܥ)
߲ଶݓ
ଶݔ߲ ) − ௣ܯ ଷܸ

߲ଶ(ݔ)ܩ
ଶݔ߲ −

߲
ݔ߲ ௘ܣܥ)

ݑ∂
ݔ∂

ݓ∂
 (ݔ∂

(17) 

Fig. 2: Piezoelectric patch along the beam 
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where ܣߩ௘	represents equivalent mass per unit length of the beam and is equal to ߩ௕ܣ௕ +  .௣ܣ௣ߩ

Symmetry in BPC geometry eliminates the effect of transverse vibration in longitudinal vibration 
equation, while difference in polarization direction in piezoelectric layers eliminates the effect of 
external voltage in the longitudinal vibration equation. Overall, the only remained nonlinear 
effect is the effect of longitudinal vibration on transverse vibration equation. So, the dynamic is 
simplified and coupling is considered as a weak type of coupling which has been eliminated in 
previous researches [25-27].  

Also, the effect of axial force caused by longitudinal elastic strain could be considered negligible 
in transverse vibration [23]. So, it is possible to neglect the effect of longitudinal vibration on 
transverse vibration which leads to an uncoupled equation for transverse vibration as:  

௘ܣߩ 
߲ଶݓ
ଶݐ߲ = −

߲ଶ

ଶݔ߲ ௘ܫܥ)
߲ଶݓ
ଶݔ߲ ) − ௣ܯ ଷܸ

߲ଶ(ݔ)ܩ
ଶݔ߲  (18) 

As a BPC actuator vibrates in an air environment, it interacts with surrounding air molecules and 
will cause an air flow. Thus, a hydrodynamic force will be exerted on the beam which results 
damping effects on the system. In addition, there is always inevitable structural damping which 
occurs due to strain rate [28]. Neglecting all other sorts of damping, the vibration equations 
could be modified as followings: 

௘ܣߩ 
߲ଶݑ
ଶݐ߲ + ௔௨ܤ

ݑ߲
ݐ߲ −

߲
ݔ߲ ௦௨ܤ)

߲ଶݑ
(ݐ߲ݔ߲ −

߲
ݔ߲ ௘ܣܥ)

ݑ∂
(ݔ∂ = 0 (19) 

௘ܣߩ 
߲ଶݓ
ଶݐ߲ + ௔௪ܤ

ݓ߲
ݐ߲ +

߲ଶ

ଶݔ߲ ௦௪ܤ)
߲ଷݓ
(ݐଶ߲ݔ߲ +

߲ଶ

ଶݔ߲
ቆܫܥ௘

߲ଶݓ
ଶݔ߲

ቇ = ௣ܯ− ଷܸ
߲ଶ(ݔ)ܩ
ଶݔ߲  

 
(20) 

௦ܤ ௔ andܤ  represent the coefficients of viscous damping in air and structural damping, 
respectively. Subscripts ݑ and ݓ denote longitudinal and transverse domains, respectively. 

2.1. Dynamic model discretization 
In this section, a solution for the derived vibration equations is achieved by discretizing the 
continuous dynamic model. To discretize the continuous dynamic model, the separation of 
variables technique is utilized. Since the vibration equations are considered to be decoupled 
according to section 2.1, exact solution, with respect to length variable (ݔ), is obtained for both 
vibration equations by satisfying all boundary conditions and applying exact mode shapes. 

2.1.1. Longitudinal dynamic model discretization  
The longitudinal displacement ݔ)ݑ, -can be expressed by a uniform convergent series of eigen (ݐ
functions as [23]: 

 
,ݔ)ݑ (ݐ =෍ܦ௜ߠ௜(ݔ)ߟ௜(ݐ)

௡

௜ୀଵ

 (21) 

where ߠ௜(ݔ)  represents exact un-damped mode shapes which could be calculated by satisfying 
the boundary conditions. ܦ௜ is mode shape normalizing coefficient which is further defined in 
(27). Considering the cantilever in Figure 1, boundary conditions could be as: 
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,ݔ)ݑ  ௫ୀ଴|(ݐ = 0 ∀݅ ∶ ௫ୀ଴|(ݔ)௜ߠ	 = 0  

(22)  ܰ|௫ୀ௅ = ௘ܣܥ
,ݔ)ݑ߲ (ݐ
ݔ߲

ฬ
௫ୀ௅

= 0 ∀݅ ∶ 	
(ݔ)௜ߠ߲
ݔ߲

ฬ
௫ୀ௅

= 0 

To satisfy the above boundary conditions, exact solution for ߠ௜(ݔ) is [23]: 

(ݔ)௜ߠ  = Sin	[(2݅ − 1)
ݔߨ
 (23) [ܮ2

The most important feature of mode shapes is their orthogonality which could be expressed as 
following equations utilizing Kronecker delta function [23]: 

 න ݔ݀(ݔ)௡ߠ௡ܦ	(ݔ)௠ߠ௠ܦ௘ܣߩ = ௠௡ߢ
௅

଴
 (24) 

 න (ݔ)௠ߠ௠ܦ
߲
ݔ߲ ௘ܣܥ)

((ݔ)௡ߠ௡ܦ)∂
ݔ∂ ݔ݀(

௅

଴
= −߱௨௠ଶ  ௠௡ (25)ߢ	

௠௡ߢ  ௠௡ denotes the Kronecker delta function which is defined asߢ   = ቄ1						݉ = ݊
0						݉ ≠ ݊	  and ߱௨௜ 

represents the i-th undamped natural frequency of longitudinal vibration. Substituting (21) into 
(16), assuming all mode shapes at the same vibrating frequency (ݑത௜(ݔ, (ݐ =  ఠ௧) will leadࣻ݁(ݔ)௜ߠ
to a formula for calculating undamped natural frequencies as: 

 
߱௨௜ = (2݅ − 1)

ߨ
ܮ2

ඨ
௘ܣܥ
௘ܣߩ

 (26) 

Considering (24) and assuming m and n denote the same mode shape, then ܦ௜	will be defined as: 

 න ݔ݀(ݔ)௜ߠ௜ܦ	(ݔ)௜ߠ௜ܦ௘ܣߩ = 1		 →	
௅

଴
௜ܦ =

1

ට∫ ௜ߠ௘ܣߩ
ଶ(ݔ)݀ݔ	௅

଴

 
(27) 

To discretize the continuous longitudinal vibration, (21) is substituted in (19): 

 
(ݔ)௜ߠ௜ܦ௘෍ܣߩ

௡

௜ୀଵ

߲ଶߟ௜(ݐ)
ଶݐ߲ + (ݔ)௜ߠ௜ܦ௔௨෍ܤ

௡

௜ୀଵ

(ݐ)௜ߟ߲
ݐ߲ −

߲
ݔ߲ ௦௨ܤ)

෍ܦ௜

௡

௜ୀଵ

(ݔ)௜ߠ߲
ݔ߲

(ݐ)௜ߟ߲
ݐ߲ )

−
߲
ݔ߲

௜ܦ௘෍ܣܥ)

௡

௜ୀଵ

(ݔ)௜ߠ∂
ݔ∂

(ݐ)௜ߟ( = 0 
(28) 

Multiplying  ܦ௝ߠ௝(ݔ)  to this equation and integrating along the beam and utilizing (24) and (25) 
will lead to final discretized equation for longitudinal vibration: 

ప̈ߟ  + ௨ߙ) + ௨߱௨௜ߚ
ଶ ప̇ߟ( + ߱௨௜

ଶ ௜ߟ = 0 (29) 

where  ߙ௨	,  ௨ are proportional damping coefficients that can be identified only by experimentߚ
and are constant for each actuator [29]. ܤ௔௨ and ܤ௦௨ are generally complicated functions since 
they are affected by many parameters but in our cases study they are considered to be constant 
which is justifiable by assuming constant geometry and mechanical properties along the 
cantilever and also a relatively stable environmental condition. 
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௨ߙ  = න ݔ݀(ݔ)௝ߠ௝ܦ(ݔ)௜ߠ௜ܦ௔௨ܤ =
௔௨ܤ
௘ܣߩ

௜௝ߢ	
௅

଴
 (30) 

௨ߚ  = න
߲
ݔ߲

ቆܤ௦௨ܦ௜
(ݔ)௜ߠ߲
ݔ߲

ቇܦ௝ߠ௝(ݔ)݀ݔ = −
௦௨ܤ
௘ܣܥ

	
௅

଴
߱௨௜
ଶ  ௜௝ (31)ߢ	

2. 1.2. Transvers dynamic model discretization  
Similar to longitudinal displacement, transverse displacement ݔ)ݓ,  can also be expressed by a (ݐ
uniformly convergent series of eigen-functions as [23]: 

 
,ݔ)ݓ (ݐ =෍ܭ௜߮௜(ݔ)ߦ௜(ݐ)

௡

௜ୀଵ

 (32) 

Where ߮௜(ݔ)  denotes exact un-damped mode shapes which could be calculated by satisfying the 
boundary conditions. ܭ௜  is mode shape normalizing coefficient which is further defined in (40). 
For a cantilevered beam in Figure 1 by considering that exact mode shapes are expressed as: 
߮௜(ݔ)=ܣଵݏ݋ܥ(ߛ௜ݔ) + (ݔ௜ߛ)ଶܵ݅݊ܣ + (ݔ௜ߛ)ℎݏ݋ܥଷܣ +  the coefficients ,(ݔ௜ߛ)ସܵ݅݊ℎܣ
ଵܣ 	, ,ଶܣ ,ଷܣ  ସ  could be determined by satisfying the boundary conditions as the followingܣ
formulation. Note that shear force (Q) acting on a beam is equal to ܳ = ௘ܫܥ

డయ௪
డ௫య

  according to 
Euler–Bernoulli beam’s theory. 

,ݔ)ݓ  ௫ୀ଴|(ݐ = 0 
௫ୀ௅|ܯ = ௘ܫܥ−

߲ଶݔ)ݓ, (ݐ
ଶݔ߲

ቤ
௫ୀ௅

= 0  

 

 

(33) 

,ݔ)ݓ߲  (ݐ
ݔ߲

ฬ
௫ୀ଴

= 0 ∀݅ ∶ 	
߲߮௜(ݔ)
ݔ߲

ฬ
௫ୀ଴

= 0 

 ܳ|௫ୀ௅ = ௘ܫܥ
߲ଷݔ)ݓ, (ݐ
ଷݔ߲

ቤ
௫ୀ௅

= 0 ∀݅ ∶ 	
߲ଷ߮௜(ݔ)
ଷݔ߲

ቤ
௫ୀ௅

= 0 

௫ୀ௅|ܯ  = ௘ܫܥ−
߲ଶݔ)ݓ, (ݐ
ଶݔ߲

ቤ
௫ୀ௅

= 0 ∀݅ ∶ 	
߲ଶ߮௜(ݔ)
ଶݔ߲

ቤ
௫ୀ௅

= 0 

Substituting the assumed ߮௜(ݔ)  in the above boundary conditions leads to frequency equation 
and below alleviations: 

Frequency Equation: ∀݅ ∶ (ܮ௜ߛ)ℎݏ݋ܥ	(ܮ௜ߛ)ݏ݋ܥ	 = −1 (34) 

Alleviations: 
∀݅ ∶ 	 ቐ

ଵܣ = ଷܣ = 0

ସܣ	 = −
(ܮ௜ߛ)ݏ݋ܥ + (ܮ௜ߛ)ℎݏ݋ܥ
(ܮ௜ߛ)݊݅ܵ + ܵ݅݊ℎ(ߛ௜ܮ)

ଶܣ
  (35) 

And hence the ith mode shape can be expressed as: 

 ߮௜(ݔ)= [ݏ݋ܥ(ߛ௜ݔ) − [(ݔ௜ߛ)ℎݏ݋ܥ	 −
஼௢௦(ఊ೔௅)ା஼௢௦௛(ఊ೔௅)
ௌ௜௡(ఊ೔௅)ାௌ௜௡௛(ఊ೔௅)

(ݔ௜ߛ)݊݅ܵ] − ܵ݅݊ℎ(ߛ௜ݔ)] (36) 

Orthogonality of mode shapes for the transverse vibration would result [23]: 

 න ݔ݀(ݔ)௡߮௡ܭ	(ݔ)௠߮௠ܭ௘ܣߩ = ௠௡ߢ

௅

଴
 

(37) 

 න (ݔ)௠߮௠ܭ
∂ଶ

ଶݔ∂
௘ܫܥ)

∂ଶ(ܭ௡߮௡(ݔ))
ଶݔ∂

ݔ݀(
௅

଴
= ߱௠

ଶ  ௠௡ (38)ߢ	
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where ߱௪௜ represents the ith un-damped natural frequency. Substituting (32) into (18), assuming 
all mode shapes at the same vibrating frequency (ݓഥ௜(ݔ, (ݐ = ߮௜(ݔ)݁ࣻఠ௧) and no external 
perturbations (ܯ௣ ଷܸ = 0), will lead to the definition of undamped natural frequency as: 

 
߱௪௜ = ௜ଶඨߛ

௘ܫܥ
௘ܣߩ

 (39) 

Where ߛ௜ could be obtained by solving the frequency equation (34) numerically and the results 
are  ߛ௜ܮ = {1.875	, 4.694	, 7.855	, 10.995	, … . } that accounts for different mode shapes. 

Considering (32) and assuming the same mode shapes, then ܭ௜  will be 	derived as: 

 න ݔ݀(ݔ)௜߮௜ܭ	(ݔ)௜߮௜ܭ௘ܣߩ = 1		 →	
௅

଴
௜ܭ =

1

ට∫ 	ݔ݀(ݔ)௘߮௜ଶܣߩ
௅
଴

 (40) 

To discretize the continuous transverse vibration, (32) is substituted in (20): 

 
(ݔ)௜߮௜ܭ௘෍ܣߩ

௡

௜ୀଵ

߲ଶߦ௜(ݐ)
ଶݐ߲

௔௪ܤ+ ෍ܭ௜߮௜(ݔ)
௡

௜ୀଵ

(ݐ)௜ߦ߲
ݐ߲

+
߲ଶ

ଶݔ߲
௜ܭ௦௪෍ܤ)

௡

௜ୀଵ

߲ଶ߮௜(ݔ)
ݔ߲

(ݐ)௜ߦ߲
ݐ߲

)

+
߲ଶ

ଶݔ߲ ௘ܫܥ)
෍ܭ௜

௡

௜ୀଵ

∂߮௜(ݔ)
ݔ∂ (ݐ)௜ߦ( = ௣ܯ− ଷܸ

߲ଶ(ݔ)ܩ
ଶݔ߲  

(41) 

it should change to 37 according to Q4 

Multiplying  ܭ௝߮௝(ݔ)  to this equation and integrating along the beam and substituting (37) and 
(38) in (41) will lead the formulation to the discretized transverse vibration equation: 
+ప̈ߦ  ௪ߙ) + ௪߱௪௜ߚ

ଶ ప̇+߱௪௜ߦ(
ଶ ௜ߦ = ௣ܯ− ଷܸන ௝ܭ	 ௝߮(ݔ)

௅

଴

߲ଶ(ݔ)ܩ
ଶݔ߲  ݔ݀

(42) 

Where  ߙ௪	,  ௪ are proportional damping coefficients that can be identified only by experimentߚ
and are constant for each actuator [29]. For similar reasons mentioned in section 2.2.1 ܤ௔௪ and 
௦௪ܤ  are considered constant values in our case study; hence, ߙ௪	,  :௪ could be defined asߚ

௪ߙ  = න ݔ݀(ݔ)௝߮௝ܭ(ݔ)௜߮௜ܭ௔௪ܤ =
௔௪ܤ
௘ܣߩ

௜௝ߢ	
௅

଴
 (43) 

௪ߙ  = න ݔ݀(ݔ)௝߮௝ܭ(ݔ)௜߮௜ܭ௔௪ܤ =
௔௪ܤ
௘ܣߩ

௜௝ߢ	
௅

଴
 (44) 

To put forward (39), since	(ݔ)ܩ = ݔ)ܪ− − ݔ)ߜ		and (ܮ − (ܮ = డு(௫ି௅)
డ௫

 , thus డ
మீ(௫)
డ௫మ

= − డఋ(௫ି௅)
డ௫

 
and the aforementioned Dirac delta function will be utilized to simplify right-hand side of the 
equation. For any arbitrary target point ݈௧	 (0	 <	 ݈௧	 <   :(ܮ

 න 	߮௝(ݔ)
௅

଴

ݔ)ߜ߲ − ݈௧)
ݔ߲ ݔ݀ = −න 	

௅

଴

߲߮௝(ݔ)
ݔ߲ ݔ)ߜ − ݈௧)݀ݔ = −

߲߮௝(ݔ)
ݔ߲

ቤ
௫ୀ௟೟

 (45) 

Now, by substituting (42) to (39): 

ప̈ߦ  + ௪ߙ) + ௪߱௪௜ߚ
ଶ +ప̇ߦ( ߱௪௜

ଶ ௜ߦ = ௣ܯ− ଷܸܭ௜
߲߮௜(ݔ)
ݔ߲

ቤ
௫ୀ௅

 (46) 
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Note that ଷܸ is the key factor that runs the actuator and since it’s an external input to the plant, 
generally it is considered as function of time ଷܸ = ଷܸ(ݐ) and for further simplifications in 
notations: ݉௣௜ = ௜ܭ௣ܯ−

డఝ೔(௫)
డ௫

ቚ
௫ୀ௅

௜߱௪௜ߤ2 ,  = ௪ߙ + ௪߱௪௜ߚ
ଶ  where ߤ௜ is linear damping 

coefficient of the system and should be identified experimentally for at least two vibrational 
modes. Then ߙ௪ , ௔௪ܤ ௪ and damping coefficientsߚ , ௦௪ܤ  could readily be calculated using: 
 

ቂ
௪ߙ
௪ߚ
ቃ = ቈ1		

1				
	߱௪௜

ଶ

߱௪௝
ଶ ቉

ିଵ

൤
௜߱௪௜ߤ2
௝߱௪௝ߤ2

൨ (47) 

3. Analysis of dynamic behavior 
In this section, dynamic behavior of a BPC actuators is investigated. In the previously presented 
models, only first two vibrational modes were considered and only sufficient non-minimum 
phase region has been identified, but here we identify exact non-minimum phase region along 
the actuator’s length. Also, in the previous researches only first two vibrational modes have been 
investigated but here we consider first three modes and show how considering the third mode 
will change the minimum phase region.  

A linear dynamic system is called minimum phase if all of its transfer function zeroes are located 
in the left half plane (LHP). If the transfer function includes any right half plane (RHP) zero, the 
system would be non-minimum phase [30, 31]. 

The concept of non-minimum phase dynamic plays a paramount important role in control micro-
manipulation processes and that is because a non-minimum phase system may lead to instability 
in control of such systems [30]. Thus, the conditions causing a dynamic system such as a BPC to 
be a non-minimum phase system and also vulnerability of such system to become a non-
minimum system should be precisely determined.  

For an arbitrary target point on the beam (݈௧), transverse deflection according to first three mode 
shapes could be represented as: ݔ)ݓ, (ݐ = (ݐ)ଵߦ(ݔ)ଵ߮ଵܭ + (ݐ)ଶߦ(ݔ)ଶ߮ଶܭ +  .(ݐ)ଷߦ(ݔ)ଷ߮ଷܭ
Different mode shapes could be visualized as Figure 3. 

Considering ଷܸ(ݐ)  and ݔ)ݓ,  as the input and output of the control plant, respectively, for any		(ݐ
arbitrary target point (݈௧) transfer function ܶ  :could be driven from (46) as (ݏ)

(ݏ)ܶ  =
(௧݈)ݓ

ଷܸ
=

݉௣ଵ߮ଵ(݈௧)
ଶݏ ݏଵ߱௪ଵߤ2+ + ߱௪ଵଶ

+
݉௣ଶ߮ଶ(݈௧)

ଶݏ + ݏଵ߱௪ଵߤ2 + ߱௪ଶଶ
+

݉௣ଷ߮ଷ(݈௧)
ଶݏ + ݏଵ߱௪ଵߤ2 + ߱௪ଷଶ

=
(ݏ)ܰ
 (ݏ)ܦ

(48) 

Where ܰ(ݏ) and (ݏ)ܦ  are the numerator and denominator of the transfer function, respectively. 
It should be noted that due to the definition of ݉௣௜ , its sign is the same as the sign of  డఝ೔(௫)

డ௫
ቚ
௫ୀ௅

 ; 

thus, for example, 	݉௣ଵ > 0		according to Figure 3 first mode shape.  
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(a) (b) (c) 

 
Fig. 3: First three mode shapes of a length-normalized BPC actuator                                                                         

(a) First Mode, (b) Second Mode, (c) Third Mode 

The location of the zeroes deeply impresses the stability of the plant as well as its dynamic 
behavior in the closed-loop system. Analyzing roots of ܰ(ݏ) would give us the zeros of the 
system: 

(ݏ)ܰ  = 	݉௣ଵ߮ଵ(݈௧)[ܽଵݏସ + ܽଶݏଷ + ܽଷݏଶ + ܽସݏଵ + ܽହ] (49) 

 ܽଵ = 1+ ଶߣ + ଶߣ												ଷߣ =
݉௣ଶ߮ଶ(݈௧)
݉௣ଵ߮ଵ(݈௧)

ଷߣ												 =
݉௣ଷ߮ଷ(݈௧)
݉௣ଵ ଵ߮(݈௧)

, 

(50) 

 ܽଶ = ଶ߱௪ଶߤ2) + (ଷ߱௪ଷߤ2 + ଵ߱௪ଵߤଶ(2ߣ + (ଷ߱௪ଷߤ2 + ଵ߱௪ଵߤଷ(2ߣ +  (ଶ߱௪ଶߤ2

 ܽଷ = (߱௪ଶଶ +߱௪ଷ
ଶ + (ଷ߱௪ଷߤଶ߱௪ଶߤ4 + ଶ(߱௪ଵߣ

ଶ + ߱௪ଷଶ + (ଷ߱௪ଷߤଵ߱௪ଵߤ4
+ ଷ(߱௪ଵଶߣ + ߱௪ଶଶ +  ,(ଶ߱௪ଶߤଵ߱௪ଵߤ4

 ܽସ = ଶ߱௪ଶ߱௪ଷଶߤ2) + ଷ߱௪ଷ߱௪ଶߤ2
ଶ ) + ଵ߱௪ଵ߱௪ଷߤଶ(2ߣ

ଶ + ଷ߱௪ଷ߱௪ଵଶߤ2 )
+ ଵ߱௪ଵ߱௪ଶଶߤଷ(2ߣ ଶ߱௪ଶ߱௪ଵଶߤ2+ ), 

 ܽହ = (߱௪ଶଶ ߱௪ଷଶ ) + ଶ(߱௪ଵଶߣ ߱௪ଷଶ ) + ଷ(߱௪ଵଶߣ ߱௪ଶ
ଶ ) 

 

To have the system remaining in the minimum phase region, it is necessary to locate all of zeroes 
in LHR region. It also should be noticed that ݉௣ଵ߮ଵ(݈௧) > 0  is valid for any arbitrary target  

point (݈௧). Thus, the sufficient prerequisite condition for minimum phase region is [30]: 

 

mode shape Ki i x
mode shape slope
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1 x

2 x

3 x

 ܵ1 = ଵݏ + ଶݏ + ଷݏ + ସݏ =
−ܽଶ
ܽଵ

< 0 

(51) 

 ܵ2 = ଶݏଵݏ + ଷݏଵݏ + ସݏଵݏ + ଷݏଶݏ + ସݏଶݏ + ସݏଷݏ =
ܽଷ
ܽଵ

> 0 

 ܵ3 = ଷݏଶݏଵݏ + ସݏଶݏଵݏ + ସݏଷݏଵݏ + ସݏଷݏଶݏ =
−ܽସ
ܽଵ

< 0 

 ܵ4 = ସݏଷݏଶݏଵݏ =
ܽହ
ܽଵ

> 0 

where ݏଵ, ଶݏ , ଷݏ ,  Moreover, the sufficient prerequisite condition to .(ݏ)ܰ ସ represent the zeros ofݏ
have all four zeroes in the LHR region is: ܵ1, ܵ3 < 0	and	ܵ2, ܵ4 > 0. It is obvious that the 
recent condition only depends on magnitude and sign of the ߣଶ	,  ଷ. One of the sufficientߣ
conditions that provides the system with minimum phase region is when: ܽଵ, ܽଶ, ܽଷ , ܽସ , ܽହ > 0 or 
when: ߣଶ	, ଷߣ > 0  which is attained, according to Figure 3, if the target point is to be located 
after the second node of the third mode shape (ݔ >  That’s because in this region .( ܮ0.868
݉௣ଶ < 0	,߮ଶ(݈௧) < 0 and also ݉௣ଷ > 0	, ߮ଷ(݈௧) > 0; thus, the result would be: ߣଶ > 0  and 
ଷߣ > 0. Figure 4 shows the specified region. 

 

 

 

 

 

 

 
Fig. 4: First three mode shapes of a length-normalized BPC actuator. Target point at x > 0.868L  provides the 

system a sufficient condition for minimum phase criteria 

Following same procedure for only first two mode shapes would result in x > 0.783L as a 
condition that provides the system with minimum phase region. This means that once we 
consider the third mode in addition to first two mode shapes, the minimum phase region shrinks 
i.e. moves from node of the second mode shape to last node of the third mode shape. So, the 
more mode shapes we consider the smaller the minimum phase region becomes and the last node 
of the highest mode shape defines the minimum phase region.  
In next step, exact edge of minimum phase criteria will be investigated. Finding the border of 
minimum phase and non-minimum phase region is important since it’s decisive for determining 
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safety factor when it comes to design a controller for BPC actuators. According to 
aforementioned conditions for minimum phase region, both ܵ1, ܵ3 < 0		and		ܵ2, ܵ4 > 0		must be 
satisfied simultaneously. ܵ1, ܵ2, ܵ3, ܵ4 are obtained by substituting (50) into (51) and are 
depicted a function over cantilever’s length. 

As it is seen in Figure 5, the region over the beam that satisfies ܵ1, ܵ3 < 0		and		ܵ2, ܵ4 > 0		 
simultaneously is when target point is located at ݔ >  Conclusively, the edge of .ܮ0.868
minimum and non-minimum phase region is ݔ =  when first three mode shapes are taken ܮ0.868
into consideration which is located before the second node of the third mode shape. 

Same conclusion could be made based on Figure 6 which is the plot for aଵ	to	aହ: 
 

  

 
 

Fig. 5: Normalized S1, S2, S3, S4  for a BPC actuator, considering first three mode shapes 
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Fig. 6: Normalized ܽଵ	݋ݐ	ܽହ for a BPC actuator, considering first three mode  

 
As it is seen from Figure 6, if the target point is located at ݔ >  the cantilever’s dynamic ,ܮ0.868
system is considered minimum phase. 

3.1. Simulation study for dynamic behavior analysis 
A case study is done to investigate the consistency and accuracy of the proposed analytical 
analysis. In this regard, a cantilever made of brass and fully covered by piezoelectric layers on 
both sides, is considered dynamic system for case study. The material properties of the Brass 
substrate and PZT layers are shown in Table 1. Note that piezoelectric material for this cases 
study is PZT-5A. 

It should be noted that ߙ௪  and ߚ௪ are damping coefficients that are calculated using 
experimental results and the process is further explained in section 4.1. Damping coefficients are 
considered unique for the whole system so the values of these parameters are considered the 
same for bulk substrate and piezoelectric layers. Moreover, according to considered material 
properties, first three natural frequencies are attained according to (39) and listed in Table 2. 
Zero-elimination phenomenon happens here by changing from minimum phase to non-minimum 
phase region along the cantilever i.e. RHP zeroes appear in the cantilever’s dynamic system by 
changing the target point. To elaborate on that, Bode magnitude plot and frequency response of 
the cantilever for three target points including 0.9L and 0.8L and 0.7L are shown in Figure 7 and 
Figure 8, respectively. Moreover, root locus analysis, shown in Figure 9 and Figure 10, help to 
picture how zeros appear in RHP when dynamic system becomes non-minimum phase. 

a1

a2

a3

a4

a5
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Table 1: Material properties of Brass substrate and piezoelectric layers used in BPC 

Symbol  Unit PZT-5A Brass 

Y Width (mm) 3 3 

L Length (mm) 23.98 23.98 

௕ݐ 	, ௣ݐ  Thickness (mm) 0.13 (each) 0.12 

 Mass density (kg/݉ଷ) 7800 9000 ߩ

௕ܥ 	,  ௣ Modules of elasticity (G Pa) 58 105ܥ

݁ଷଵ Piezoelectric constant (C/݉ଶ) -5.7 ---- 

 ௪ Mass damping coefficients ---- 1e-4ߙ

 ௪ Stiffness damping coefficient ---- 1e-6ߚ

 ଵ 1st Linear damping coefficient ---- 8.6e-4ߤ

 ଶ 2nd Linear damping coefficient ---- 5.4e-3ߤ

 

Fig. 7: Bode magnitude plot for different target points on the cantilever 
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Table 2: First three natural frequencies of the BPC actuator  
Mode number Natural frequency (Rad/Sec) 

1 1733.381 

2 10863.698 

3 30421.731 

 

Fig. 8: Frequency response for different target points on the cantilever 

   

Fig. 9: Root locus diagram for different target points on the cantilever 
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Fig. 10: Root locus diagrams for different target pints on the cantilever 

As it is seen, at the target point ݔ =  both zeroes exist in the dynamic operation i.e. the ܮ0.9
system is minimum phase as was expected. But at the target point ݔ =  the second zero ܮ0.8
(zero between second and third poles) is eliminated and also at target point ݔ =  first zero ,ܮ0.7
(zero between first and second poles) is shifted and superseded the second zero. Neither at target 
point ݔ = ݔ nor at ,ܮ0.8 =  is the system minimum phase because of the advent of RHP ܮ0.7
zeroes. It should be noted that the emergent of RHP zeroes due to changing the target point is an 
inherent feature of BPC actuators; hence, it’s an inevitable phenomenon which has to be 
considered when aim is to design or utilizing a BPC actuator. 

4. Experimental validation 
In this section, an experimental setup is developed to validate the proposed dynamic model. For 
that, a laser sensor (ILD2300 made by Micro-Epsilon©) with a resolution of 10nm is utilized in 
the setup to measure the deflection of piezoelectric cantilever at different target points. Bimorph 
piezoelectric actuator (T215-A4-103X from Piezo System Company, Woburn, MA, USA) is 
clamped on one end and free at the other one where the free end is aligned across the laser’s 
focus length. The geometric and material properties of the cantilever are listed in Table1. The 
cantilever is actuated by an applied voltage generated by a data acquisition card (PIC-1716, 
Advantech) and aplified by an aplifier (EPA-104-230). The data acquisition card (DAQ), with 
sampling rate of 250 kHz, also is used as an interface between laser and computer. Figure 11 
shows the experimental set-up and configuration. 

4.1. Linear dynamic identification 
To identify the linear damping coefficients, an arbitrary target point, ݈௧ = 21.04	݉݉ =  ,ܮ0.88
was chosen for frequency response, and by fitting the simulation result on experimental result 
linear damping coefficient was attained in two steps.  

First, in order to suppress the hysteresis and material nonlinearity effects, a chirp type input 
voltage with low-amplitude 0.2	ܸ was applied to the actuator and results were further analyzed 
as shown in Figure 12. Damping coefficients were obtained by fitting simulation results with 
experimental data for first and second mode shapes in both experiments. An acceptable 
consistency between experimental and simulation results could be seen and the obtained 
damping coefficients are provided in Table 1. 
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 (a) 

 

(b) 

 

(c) 

 
 

Fig. 11: Experimental setup (a, b) and configuration (c) 
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Fig. 12: Frequency response for ݈௧ = 21.04	݉݉ = ܸ  and  ܮ0.88 = 0.2	ܸ 

 
Fig. 13: Frequency response for ݈௧ = 21.04	݉݉ = ܸ  and  ܮ0.88 = 2	ܸ 
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Fig. 14: Frequency response for ݈௧ = 17.98	݉݉ = ܸ  and  ܮ0.75 = 2	ܸ   frequency range = 600-6000 Hz 

 

 
Fig. 15: Frequency response for ݈௧ = 14.77	݉݉ = ܸ  and  ܮ0.62 = 1	ܸ 
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(a) 
 

(b) 
 

 
Fig. 16: Frequency response for ݈௧ = 21.58	݉݉ = 0.9   

(a): frequency range = 0-3000 Hz and input voltage = 1.4V 
(b): frequency range = 600-6000 Hz and input voltage = 2V 
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(a) 
 

 
(b) 

 

Fig. 17: Frequency response for ݈௧ = 19.18	݉݉ = 0.8   
(a): frequency range = 0-3000 Hz and input voltage = 1.4V 
(b): frequency range = 600-6000 Hz and input voltage = 2V 
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(a) 
 

(b) 
 

Fig. 18: Frequency response for ݈௧ = 16.78	݉݉ = 0.7   
(a): frequency range = 0-3000 Hz and input voltage = 1.4V 
(b): frequency range = 600-6000 Hz and input voltage = 2V 

It is notable that a distortion called softening can be seen around the natural frequencies by 
increasing the input voltage. It is caused by piezoelectric material nonlinearity which only 
happens near resonances and does not affect the general actuator response [32-34].  
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To evaluate the identification results, proposed dynamic model with identified damping 
coefficients was applied to two target points,	݈௧ = and ݈௧ ܮ0.62 =  at different frequencies ,ܮ0.75
and the results are compared with experimental results. As it is seen from Figures 14, 15, an 
acceptable consistency between the results approves the validity of identification section. 

Second, to illustrate the zero effect it is necessary to increase the amplitude of input voltage. In 
this regard, the amplitude of chirp type input voltage was 2	ܸ and the experiment results are 
depicted in Figure 13.  

4.2. Dynamic behavior analysis 
To investigate zero-elimination phenomenon experimentally, frequency response of three 
different target points, l୲ = ,	ܮ0.9 l୲ = ,	ܮ0.8 and	l୲ =  are investigated. Results are depicted ,ܮ0.7
in Figures 16, 17 and Figure 18, respectively. It is seen that position of zeroes change by 
changing the target point’s position according to the fixed position of poles. Moreover, based on 
the results in section 3.2, it is expected to observe the system operating in non-minimum phase 
region both at l୲ = and l୲ ܮ0.8 =  ,due to the elimination of the second and first zeros ܮ0.7
respectively. This expectation is validated by experimental results in this section. In each figure, 
frequency responses of experimental results are shown along with the results of proposed 
dynamic model and a good consistency is seen between them. It should be noted that in each 
case the actuator underwent two different range of frequencies, first = 0-3000 Hz and second = 
600-6000 Hz, to cover all first three vibrational modes. The second frequency range was done 
with a greater amplitude of input voltage to better show the zero-elimination effect. 

5. Conclusion 
In this paper, a continuous model for BPC actuator's dynamic behavior has been developed 
considering both transverse and longitudinal vibrations. Modal analysis was utilized for 
discretizing coupled set of vibration equations which resulted in uncoupled equations only for 
fully covered BPC actuator on both sides. Furthermore, dynamic behavior was analyzed to 
determine the exact non-minimum phase region along the actuator’s length. A simulation study 
was employed to better clarify zero-elimination phenomenon based on non-minimum phase 
concept considering first three vibrational modes for different target points. The proposed 
dynamic model was evaluated experimentally, and adequate consistency with theoretical results 
confirmed the validity of proposed model. 

Acknowledgments 
The authors are indebted to NTRC (New Technology Research Center) of Amirkabir University 
of Technology (Tehran Polytechnic) for providing the resources and facilities for this research. 

References 

[1] M. Motamedi, M.T. Ahmadian, G. Vossoughi, S.M. Rezaei, M. Zareinejad, Adaptive sliding mode control of a 
piezo-actuated bilateral teleoperated micromanipulation system, Precision Engineering, 35 (2011) 309-317. 
[2] T. Müller, A. Kugi, G. Bachmaier, M. Gerlich, Modelling and identification of a piezoelectrically driven fuel 
injection control valve, Mathematical and Computer Modelling of Dynamical Systems, 16 (2010) 285-305. 

 



M. Ebrahimi et al. / Journal of Theoretical and Applied Vibration and Acoustics 4(1) 99-124 (2018) 

123 
 

[3] S. Shim, M.G. Kim, K. Jo, Y.S. Kang, B. Lee, S. Yang, S.-M. Shin, J.-H. Lee, Dynamic characterization of 
human breast cancer cells using a piezoresistive microcantilever, Journal of biomechanical engineering, 132 (2010) 
104501. 
[4] Q. Xu, Precision position/force interaction control of a piezoelectric multimorph microgripper for 
microassembly, IEEE Transactions on Automation Science and Engineering, 10 (2013) 503-514. 
[5] S. Bashash, R. Saeidpourazar, N. Jalili, Development, analysis and control of a high-speed laser-free atomic 
force microscope, Review of Scientific Instruments, 81 (2010) 023707. 
[6] A. Salehi-Khojin, S. Bashash, N. Jalili, Modeling and experimental vibration analysis of nanomechanical 
cantilever active probes, Journal of Micromechanics and Microengineering, 18 (2008). 
[7] N. Garcia, Theory of scanning tunneling microscopy and spectroscopy: resolution, image and field states, and 
thin oxide layers, IBM journal of research and development, 30 (1986) 533-542. 
[8] M. Mohammadpour, M. Dardel, M.H. Ghasemi, M.H. Pashaei, Nonlinear energy harvesting through a 
multimodal electro-mechanical system, Journal of Theoretical and Applied Vibration and Acoustics, 1 (2015) 73-84. 
[9] R. Toscano, I.A. Ivan, Robust structured controllers for piezoelectric microactuators, ISA transactions, 53 (2014) 
1857-1864. 
[10] W.M. Chen, T.S. Liu, Modeling and experimental validation of new two degree-of-freedom piezoelectric 
actuators, Mechatronics, 23 (2013) 1163-1170. 
[11] I.A. Ivan, M. Rakotondrabe, P. Lutz, N. Chaillet, Quasistatic displacement self-sensing method for cantilevered 
piezoelectric actuators, Review of Scientific instruments, 80 (2009) 065102. 
[12] O. Bilgen, M.A. Karami, D.J. Inman, M.I. Friswell, The actuation characterization of cantilevered unimorph 
beams with single crystal piezoelectric materials, Smart Materials and Structures, 20 (2011) 055024. 
[13] S.-N. Chen, G.-J. Wang, M.-C. Chien, Analytical modeling of piezoelectric vibration-induced micro power 
generator, Mechatronics, 16 (2006) 379-387. 
[14] G. Wang, Analysis of bimorph piezoelectric beam energy harvesters using Timoshenko and Euler–Bernoulli 
beam theory, Journal of Intelligent Material Systems and Structures, 24 (2013) 226-239. 
[15] S. Peng, X. Zheng, J. Sun, Y. Zhang, L. Zhou, J. Zhao, S. Deng, M. Cao, W. Xiong, K. Peng, Modeling of a 
micro-cantilevered piezo-actuator considering the buffer layer and electrodes, Journal of Micromechanics and 
Microengineering, 22 (2012) 065005. 
[16] S. Gorthi, A. Mohanty, A. Chatterjee, Cantilever beam electrostatic MEMS actuators beyond pull-in, Journal of 
Micromechanics and Microengineering, 16 (2006) 1800. 
[17] M. Vagia, A frequency independent approximation and a sliding mode control scheme for a system of a micro-
cantilever beam, ISA transactions, 51 (2012) 325-332. 
[18] J. Yi, S. Chang, Y. Shen, Disturbance-observer-based hysteresis compensation for piezoelectric actuators, 
IEEE/Asme transactions on mechatronics, 14 (2009) 456-464. 
[19] P.-P. Chao, P.-Y. Liao, M.-Y. Tsai, C.-T. Lin, Robust control design for precision positioning of a generic 
piezoelectric system with consideration of microscopic hysteresis effects, Microsystem technologies, 17 (2011) 
1009-1023. 
[20] H. Ghafarirad, S.M. Rezaei, A.A.D. Sarhan, M. Zareinejad, Continuous dynamic modelling of bimorph 
piezoelectric cantilevered actuators considering hysteresis effect and dynamic behaviour analysis, Mathematical and 
Computer Modelling of Dynamical Systems, 21 (2015) 130-152. 
[21] A.A. Tahmasebi Moradi, S. Ziaei-Rad, R. Tikani, H.R. Mirdamadi, A finite element model for extension and 
shear modes of piezo-laminated beams based on von Karman's nonlinear displacement-strain relation, Journal of 
Theoretical and Applied Vibration and Acoustics, 2 (2016) 35-64. 
[22] N. Jalili, Piezoelectric-Based Systems Modeling, in:  Piezoelectric-Based Vibration Control, Springer, 2010, 
pp. 183-232. 
[23] S.S. Rao, Vibration of continuous systems, John Wiley & Sons, 2007. 
[24] B. Engquist, A.-K. Tornberg, R. Tsai, Discretization of Dirac delta functions in level set methods, Journal of 
Computational Physics, 207 (2005) 28-51. 
[25] A. Erturk, Assumed-modes modeling of piezoelectric energy harvesters: Euler–Bernoulli, Rayleigh, and 
Timoshenko models with axial deformations, Computers & Structures, 106 (2012) 214-227. 
[26] S. Basak, A. Raman, S.V. Garimella, Dynamic response optimization of piezoelectrically excited thin resonant 
beams, Journal of vibration and acoustics, 127 (2005) 18-27. 
[27] S. Yu, S. He, W. Li, Theoretical and experimental studies of beam bimorph piezoelectric power harvesters, 
Journal of Mechanics of Materials and Structures, 5 (2010) 427-445. 



M. Ebrahimi et al. / Journal of Theoretical and Applied Vibration and Acoustics 4(1) 99-124 (2018) 

124 
 

[28] A. Erturk, D.J. Inman, A distributed parameter electromechanical model for cantilevered piezoelectric energy 
harvesters, Journal of vibration and acoustics, 130 (2008) 041002. 
[29] A. Erturk, D.J. Inman, On mechanical modeling of cantilevered piezoelectric vibration energy harvesters, 
Journal of Intelligent Material Systems and Structures, 19 (2008) 1311-1325. 
[30] H.K. Khalil, Nonlinear Systems. 3rd Prentice-Hall, Upper Saddle River, NJ, (2002). 
[31] K. Ogata, Modern control engineering 5th edition. Lugar: Upper Saddle River, New Jersey 07458, Ed: Prentice 
Hall, (2009) 55. 
[32] S.C. Stanton, A. Erturk, B.P. Mann, D.J. Inman, Nonlinear piezoelectricity in electroelastic energy harvesters: 
Modeling and experimental identification, Journal of Applied Physics, 108 (2010) 074903. 
[33] S.C. Stanton, A. Erturk, B.P. Mann, D.J. Inman, Resonant manifestation of intrinsic nonlinearity within 
electroelastic micropower generators, Applied Physics Letters, 97 (2010) 254101. 
[34] M. Daqaq, N. Jalili, S.N. Mahmoodi, Nonlinear Dynamics of A Piezoelectrically-actuated Microcantilever 
Sensor, in:  ENOC-2008, Saint Petersburg, Russia, 2008. 
 
 


