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In this study, nonlinear vibration of axially moving strings in 

thermal environment is investigated. The vibration characteristics of 

the system such as natural frequencies, time domain response and 

stability states are studied at different temperatures. The velocity of 

the axial movement is assumed to be constant with minor harmonic 

variations. It is presumed that the system and the environment are in 

thermal equilibrium. Using Hamilton’s principle, the system 

equation of motion, and t
†
he boundary conditions are derived and 

then solved by applying Multiple Time Scales (MTS) method. The 

effect of temperature on the vibration characteristics of the system 

such as linear and nonlinear natural frequencies, stability, and 

critical speeds is investigated. Considering ideal and non-ideal 

boundary conditions for the supports, nonlinear vibration of the 

system is discussed for three different excitation frequencies. The 

bifurcation diagrams for ideal and non-ideal boundary conditions are 

presented under the influence of temperature at various speeds. 
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1.  Introduction 

To study vibration characteristics in some engineering equipment such as power transmission 

belts, tape drives, winding fibers, lift string, cranes and elevators, magnetic tapes, shearing 

strings, etc., they may be modeled as a string. Speed is an important factor in systems with an 

axially moving component. On the other hand, vibration plays a major role in limiting the 
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velocity of movement of these structures. Vibrations of axially moving structures have been 

investigated by many researchers. One of the first studies in this regard is the research of Sack 

[1] in which a string passed through two ideal pulleys with constant speed. Among the early 

studies devoted to the linear vibration analysis of axially moving strings is the study of Archibald 

and Emslie [2] where the string was assumed to be uniform and moving with a constant speed. 

Using Hamilton’s principle, Miranker [3] has extracted a vibrational model of a tape moving 

between a pair of pulleys. An approximate solution for vibration of an axially moving string has 

been obtained by Mote[4]. In this study, by assuming a variable speed for the string, stability of 

the system has been investigated. 

Vibrations and the stability of the saw blade have been investigated by Ulsoy and Mote [5]. 

Pakdemirli et al.[6] investigated transverse vibrations of the axially accelerating string. The 

equation of motion was derived using the Hamilton's principle and then the governing 

differential equation which was obtained by Galerkin method was solved. Results show that 

instability occurs in some amplitudes and frequencies related to harmonic axial velocity.  

The effect of damping on the linear vibration of axial moving structures has been addressed in 

several studies. Many studies such as (Mote; Ulsoy and Mote) [4, 5] that were performed 

regarding the axially moving string with damping has shown that the natural frequencies, 

vibration amplitudes and stability of the system depend on the damping coefficient and the speed 

of motion. 

The first investigation in which the dynamic response of axially moving viscoelastic string has 

been studied is the study of Fung et al.[7]. In another study, the qualitative aspect of parametric 

excitation due to the variable velocity of viscoelastic string has been investigated by the same 

authors (Fung et al) [8].  

Chen and Chen[9] have analyzed the nonlinear vibration of accelerated viscoelastic string with 

an approximate analytical approach. The numerical results have shown the effect of material 

properties, velocity, and initial tensile strength on the steady state response. Ghayesh [10] has 

investigated the nonlinear vibration of an axially moving viscoelastic string supported by a 

viscoelastic guide. In this study, the velocity is considered as a constant value with small 

harmonic oscillations. The viscoelastic material has been modeled as a combination of parallel 

spring and damper. Numerical simulations have demonstrated the effect of different factors such 

as axial speed, string length, damping coefficient and hardness on the stability and natural 

frequency. Mockensturm and Guo [11] have studied the nonlinear vibrations of an axially 

moving viscoelastic string under parametric excitation. The bifurcation phenomenon and chaos 

of axially moving viscoelastic string have been investigated by Chen et al.[12]. According to the 

numerical simulations, periodic, quasi-periodic, and chaotic motions can occur in the transverse 

vibrations of the axially moving viscoelastic strings. The dynamic response and stability of a 

viscoelastic belt under parametric excitation have been investigated by Zhang and Zu [13]. The 

linear viscoelastic differential constitutive law has been employed to characterize the material 

property of the belts. In this paper, generalized equation of motion has been obtained for a 

viscoelastic moving belt with geometric nonlinearity. The effects of viscoelastic parameters, 

excitation frequencies and amplitudes, and axial moving speeds on the dynamic response have 

been investigated. Chen et al.[14] have studied the nonlinear dynamics of transverse motion of 

axially moving strings. The governing equation was derived using the Newton's second law for 
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two longitudinal and transverse directions, and was then solved using Galerkin's method (Chen 

et al) [14]. 

Lepidi and Gattulli[15] studied temperature effects on the static and dynamic response of 

suspended inclined cables. The sensitivity of the linear frequencies to temperature changes is 

discussed. Yurddas et al.[16] used perturbation techniques to investigate nonlinear vibration of 

axially moving strings with multi-nonideal supports. Vibration has been studied for three 

different velocity variation frequencies. Marynowski and Kapitaniak [17] studied dynamics of 

axially moving systems which includes some results of studies in the field of dynamics of axially 

moving viscoelastic systems. Malookani and van Horssen [18] employed the two timescales 

perturbation method and the Laplace transform method to solve an initial-boundary value 

problem for a linear-homogeneous equation describing an axially moving string. Yang et al. [19] 

analyzed nonlinear vibration of axially moving strings based on gyroscopic complex modes. The 

method of multiple scales is used to investigate 1:3 internal resonance case.  

Although vibration analysis of some structures under thermal load has been considered by 

researchers, to the knowledge of the authors, vibrations of the axially moving strings in thermal 

environment have not been studied so far. In this study, the nonlinear vibration of an axially 

moving string in thermal environment has been investigated.  

2.  Equation of motion 

A uniform string with cross-sectional area A , density  , length l  which is under the initial 

tensile force of P  is assumed to move between two pulleys. The string is moving at a speed of v

. The physical model of the system is shown in Fig. 1 where,    ,w x t  denotes the transverse 

displacement of the string. The system is under thermal load such that the system and the 

environment are in thermal equilibrium and the temperature of the system is constant. The string 

is assumed to move at a constant speed with harmonic minor variations. Moreover, it is assumed 

that the initial tensile force and temperature gradient are such that string remains elastic and its 

specifications do not change. In this study, the nonlinear vibration of the system is investigated 

only in transverse direction.  

 

Fig 1: Axially moving string model 
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The nonlinear equation of motion is obtained by using Hamilton's principle given in Eq. 1.   

 
 

2

1

0c

t

t

n dU tT W     
(1) 

where T, U and ncW are kinetic energy, potential energy and work of non-conservative forces, 

respectively. 

The total kinetic energy of the system may be written as: 
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l
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. In Eq. 3,   and E  are thermal expansion coefficient and 

elastic modulus of string, respectively, and T  is temperature difference. By substituting Eqs. 2 

and 3 into Eq. 1, nonlinear equation of motion is obtained as: 

 
   2 23

2 0
2

tt x xt xx x xxA w vw Avw Av P EA T w EA w w   
 

        
 

 (4) 

For non-ideal boundary conditions we have (Yurddas et al. (2013)): 

    0, a  , ,w t w l t b      (5) 

The values of a and b are in the order of 1, and   is usually much smaller than 1 which show 

small displacements in the boundaries. In order to obtain the results independent of the geometry 

and material properties, Eq. 4 is rewritten in the dimensionless form as follows:  
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where the parameter G  and non-dimensional terms are defined as:  
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The dimensionless velocity V  slightly deviates from a constant 0V based on the following 

equation in which the amplitude and frequency of the variation are shown by 1V  and  , 

respectively.  

  0 1V V V sin     (8) 

where ε is a parameter much smaller than one. By substituting Eq. 8 into Eq. 6, and assuming

W u , the equation of motion and boundary conditions become 

 

       2

1 0 1 0 0 1cos 2   sin ( 2z zu V u V V u V V V sin                  

  2 2 2

1 1 ) 0T zz zz zV sin u Gu u          (9) 

    0 00, a  ,  1,u u b      (10) 

3.  Multiple time scales method 

To solve the nonlinear differential equation obtained in Section 2, MTS method is employed. 

First,    ,u z   is expanded as (Nayfeh and Mook)[20]: 

      0 0 1 1 0 1  ,       , ,     ,    , ...u z u z T T u z T T     (11) 

Here, 0u  and 1u  are special functions at order 1 and ε, respectively. 0  T  is a fast time scale 

and 1T   is a slow time scale. As a result, time and space derivatives are obtained as: 

 ' '0 1
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(15) 

Substitute Eqs. 11-15 into Eq. 9, one obtains: 

      2 ' '

0 0 1 0 1 1 0 0 12   cosD D D u u V T u u            

     ' '

0 1 0 0 1 0 12 sinV V T D D u u         
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      2 2 2 " "

0 0 1 0 1 0 0 12 1 TV V V sin T V sin T u u             

  " " ' ' 2

0 1 0 1( ) 0G u u u u       (16) 

To solve the problem in hand, different orders of  are separated as follows. 

3.1. Linear problem (order 1) 

The equation obtained from the first order of Eq. 16 which is a linear problem is: 

  2 ' 2 "

0 0 0 0 0 0 02 1 0TD u V D u V u      (17) 

To solve the linear problem, the special function of order 1 is considered as: 
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 
   (18) 

By using special function in Eq. 17, the following equation and boundary conditions are 

obtained: 

 

  2 ' 2 "
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(19) 
    0 00 0    ,     1 0U U   

The solution of Eq. 19 in general form is (Yurddas et al. (2013)): 

 

 1 2

0 1 2

B z B zU C e C e   (20) 

By substituting Eq. 20 into Eq. 19 and considering the boundary conditions, the linear natural 

frequencies and mode shapes functions are obtained as: 
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(22) 

 

For different temperatures and velocities, the first four natural frequencies are given in Table 1. 

The first natural frequency versus axial velocity diagram is presented Fig. 2. According to the 

results, natural frequencies decrease when temperature increases. Also, the natural frequencies 

decrease by increasing the axial velocity. When the velocity is close to the critical velocity value, 

the natural frequency will reach zero. This point resembles the start of instability in the system, 

in which case the amplitude will increase significantly. According to Fig. 2, the critical velocity 

of the system which is a function of temperature, decreases if the temperature increases. 
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Table 1: First four natural frequencies for different values of temperature and velocity 

T 0V
 1n 2n 3n 4n 

-0.3 0 3.5819 7.1639 10.7459 14.3278 

0.2 3.4717 6.9435 10.4152 13.8870 

0.4 3.1411 6.2822 9.4233 12.5644 

0.6 2.5900 5.1800 7.7701 10.3601 

0 0 3.1415 6.2831 9.4247 12.5663 

0.2 3.0159 6.0318 9.0477 12.0637 

0.4 2.6389 5.2778 7.9168 10.5557 

0.6 2.0106 4.0212 6.0318 8.04247 

0.3 0 2.6284 5.2568 7.8853 10.5137 

0.2 2.4782 4.9564 7.4347 9.9130 

0.4 2.0276 4.0553 6.0829 8.1106 

0.6 1.2766 2.5533 3.8300 5.1067 

0.6 0 1.9869 3.9738 5.9607 7.9476 

0.2 1.7882 3.5764 5.3646 7.1529 

0.4 1.1921 2.3843 3.5764 4.7686 

0.6 0.1986 0.3973 0.5961 0.7947 

 

 

Fig 2: First natural frequency in terms of velocity for various temperatures T 
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The critical velocity for different temperatures can be obtained as 1c TV    . For 1T  , the 

critical velocity will be zero which means that the system will be unstable at any speed. 

3.2. Nonlinear problem (order ε) 

The equation of order ε is: 

  2 ' 2 " '

0 1 0 0 1 0 1 0 1 0 0 0 02 1 2 2TD u V D u V u D D u V D u      
 

(23) 
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It can be seen that nonlinear terms appear and the response which can be divided into secular and 

non-secular parts is: 

      0

1 0 1 1 0 1, , , , ,ni T
u z T T z T e z T T cc

   
 

(24) 

where 


 and 


 correspond to the secular and non-secular terms of the equation, respectively, 

and cc denotes complex conjugate of the preceding terms. By using the following relations 
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(25) 

and substituting Eqs. 24 and 25 into Eq. 23, one obtains: 
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where N.S.T represents non-secular terms. Equation 26 is a non-homogeneous ordinary 

differential equation. If a nontrivial solution exists for the homogeneous part of the problem, the 

non-homogeneous part will have solution if it satisfies the solvability conditions. The non-ideal 

boundary conditions are defined as: 

  

 
1 0

1 0

  0,

 1,

T a A

T b A





 


  

(27) 

The stability of the system for different ranges of Ω is investigated in the following. The results 

are obtained for 0 0a 
. 
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3.2.1. Ω far from zero and 2 nω  

If Ω is far from zero and 2 nω , according to the non-homogenous equation and the boundary 

conditions, solution must satisfy the following solvability conditions: 

 

 2

1 1 2 0D A K A A K A    (28) 

where 1K  and 2K  are defined as: 
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In order to solve Eq. 28, A  is assumed as 
1

2
ni

nA a e


  and then the real and imaginary parts of 

the obtained equation is separated as: 
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By integrating Eq. 31, one obtains: 
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It can be seen that if 2RK  is positive, the system response will be stable and, if 2RK  is negative, 

it will be unstable. 

In Table 2, the stability state of the system is listed for different temperatures and velocities for 

the first two modes. The first mode of the system is unstable for near zero speeds and stable for 

close to critical speed. Considering the second mode, the system is stable for near zero speeds 

and the critical velocity. For this mode, the system will be unstable for the speed between fifty 

and seventy percent of critical velocity. Considering Eqs. 32 and 18, the nonlinear natural 

frequency is obtained using the amplitude of the time domain response: 

 

Table 2: Stability state 

0 / cV V  first natural frequency second natural frequency 

0 unstable stable 

0.1 unstable stable 

0.3 unstable stable 

0.5 stable unstable 

0.7 stable unstable 

0.9 stable stable 

 

 

 2
20

1 2

1 1
 

41

T
nl I n I

T

V
n K a K


  



   
   

  
 

(33) 

 

The effect of nonlinear terms on the natural frequencies of the system, considering ideal and non-

ideal boundary conditions are shown here in Figures 3–5. In Eq. 33, the nonlinear natural 

frequencies are related to the parameters 1IK  , 2 IK , and the amplitude of vibration. According 

to the results, if the amplitude increases, the nonlinear natural frequencies of the system increase 

for ideal and non-ideal boundary conditions. Figures 3 - 5 show that the nonlinear natural 

frequency for the ideal boundary condition slightly differs from the non-ideal one. The 

mentioned difference is due to the term 2 IK . 
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Fig 3: Nonlinear natural frequency versus amplitude in 

0V = 0.1 cV  at different temperatures T  

 

 

Fig 4: Nonlinear natural frequency versus amplitude in 

0V = 0.5 cV  at different temperatures T   

 

 

Fig 5 : Nonlinear natural frequency versus amplitude in 0V = 0.9 cV  at different temperatures T  

3.2.2. Ω close to zero 

If Ω is close to zero, it can be defined as  

 

    (34) 

where    is the detuning parameter. The solvability conditions for this case are obtained as 

follows: 
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where 1K  and 2K  are given in Eqs. 29 and 30, and 3K  and 4K  are: 
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  




 (36) 

  
1

' "

1 0 0 0 0
0

4 4 41
'

0 0 0 0 0
0

2  

 

n

R I

n

V i U V U U dz
K K iK

i U U V U U dz






  

  




 (37) 

By substituting the complex amplitude 
1

 
2

ni

nA a e


 into Eq. 35, and separating the real and 

imaginary parts one obtains: 

    1 3 1 4 1 2cos sinn R n R n R nD a K a T K a T K a      (38) 

 
    3

3 1 4 1 1 2

1
cos sin

4
n n I n I n I n I na D K a T K a T K a K a       (39) 

 

By integrating Eq. 35, the amplitude of vibration becomes: 

     3 1 4 1 2 1sin cos

0

R R RK T K T K T

n na a e

  



 


  
(40) 

In Eq. 40, the amplitude is limited due to the fact that  1 1sin 1 , cos 1T T   . It can be 

shown that the stability conditions of the system when Ω is close to zero is similar to the case 

that  Ω is far away from zero and 2 n , and will depend on 2RK . So, if it is positive, the system 

will be stable and if it is negative, the system will be unstable. 

3.2.3. Parametric resonance state (Ω close to  2 nω ) 

In this case, the excitation frequency is considered to be close to twice the natural frequency, 

therefore 

 2 n     (41) 

The solvability condition for this case is obtained as follows: 

 12

1 1 2 5 0i TD A K A A K A K e A     (42) 

where 1K  and 2K  are given in Eqs. 29 and 30 and the value of 5K  is: 
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 1 "'
00 0 0 0

0

5 1 1
'

0 0 0 0 0
0

[ ]
2

2  

n

n

U U iV U U dz

K V
i U U V U U dz





 
  

 
  





Ω

 (43) 

By substituting the complex amplitude 
1

 
2

ni

nA a e


 into Eq. 39, separating the real and imaginary 

parts, and considering 1 2n nT     , one obtains: 

  2 5 5 1cos sinn R R n I n nDa K K K a G       (44) 

 
  3

5 5 1 2 2

1
2 sin cos

2
n n n n R n I n n n Ia D a a K K K a a K G          (45) 

For steady state case: 

 0nDa   (46) 

 0nD   (47) 

For steady state case, there exist trivial and non- trivial solutions. For non-trivial solution, using 

Eqs. 46 and 47, the relation between σ and na ≠ 0 is obtained as:  

 2 2 2 2

1 . 2 1 2 5 5 2

1
2

2
I n I R I RK a K K K K       (48) 

To analyze the stability of the non-trivial solution, the Jacobian matrix is evaluated: 

 

0 0

1 1

2 2

, n n

n n

n n a a

G G

a
J

G G

a
 




 

  
  
 
  
 
  

 
(49) 

where 1G  and 2G  are given in Eqs. 44 and 45. Eigenvalues of the Jacobean matrix that determine 

the stability of the solution are: 

 

 2 2 2 2 2

1,2 2 2 1 5 5 2R R I n R I RK K K a K K K         
(50) 

1  and 2  are for ideal boundary conditions, and 1n  and 2n  are for non-ideal state.    1

and 1    n   are the first bifurcation points. 2      and 2    n   are also the second 

bifurcation points. The region between 1  and 2 , and the region between 1n  and 2n , 

respectively, determine the instability of the non- trivial solution in the ideal and non-ideal states. 
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Figures 6-9 exhibit bifurcation phenomenon. In these graphs, the instability regions represent 

non- trivial solution of the system in the parametric resonance state. In Figure 6, the system with 

ideal boundary conditions is considered at speeds far away from critical speed. In this case, the 

curves related to 1n  and 2n  coincide. Therefore, the trivial solution will be valid.  

Figure 7 shows the system with ideal boundary conditions at a speed far from the critical 

velocity. In this case, 1  and 2  are different. The system will have a non-trivial solution in the 

region between the two curves that correspond to 1  and 2 .  This region decreases with 

increasing temperature. 

In Figure 8, the system with non-ideal boundary conditions is considered at a speed close to the 

critical velocity. Under this condition, there is a difference between the results related to 1n  

and 2n  which refers to the validity of the non-trivial solution in this region. In Figure 9, the 

system with ideal boundary conditions is considered at a speed close to the critical velocity. In 

this case, there is also a difference between the curves of 1  and 2 . Similar to the previous case, 

this difference points the validity of a non-trivial solution in this region. By comparing the results 

of the ideal and non-ideal boundary conditions, it can be inferred that in the ideal state at all 

speeds, there is a difference between 1  and 2  curves. The region between 1n  and 2n  is 

asymmetric in the system with non-ideal boundary condition whereas region between 1  and 2  

is symmetric in the system with ideal boundary conditions.  

 

 

Fig 6: Amplitude versus σ for non-ideal state in 0V = 0.1 cV  

at different temperatures T , 1n  ( ), 2n   (--)    

 

Fig 7: Amplitude versus σ for ideal state in 0V = 0.1 cV at 

different temperatures T , 1  ( ), 2  (--) 
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Fig 8: Amplitude versus σ for non-ideal state in 0V = 0.9 cV  

at different temperatures T ,  1n  ( ) , 2n   (--) 

 

 

Fig 9: Amplitude versus σ for ideal state in 0V = 0.9 cV at 

different temperatures T , 1  ( ), 2   (--) 

 

The stable region for trivial solution is determined by performing stability analysis. For trivial 

solution, the amplitude is considered as zero, therefore: 

 

 
 

1
2

1

2

i T

A p iq e


  , 0 :   trivial solutionna p iq    
(51) 

By substituting Eq. 51 into Eq. 42, and separating the real and imaginary parts, one obtains: 

 

 
   2 2

1 2 5 5 2 1 1

1

2 4
R R I I ID p K K p K K q K q p q F

 
        

 
 

(52) 

 
   2 2

1 5 2 5 2 1 2

1

2 4
R R I I ID q K K q K K p K p p q F

 
        

 
 

(53) 

The Jacobian matrix for this state is obtained as follows: 

 

 
1 1

5 2 5 2

2 2
5 2 5 2

0

(  )      
2

  
2

R R I I

I I R R

p q

F F
K K K K

p q

F F
K K K K

p q





 

    
       

   
               




 (54) 

Eigenvalues of the Jacobian matrix are: 
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2 2 2

1,2 2 5 5 2( )
2

R R I IK K K K


       
(55) 

In this stage, 0   is taken for determining the stability boundaries. The stability region of the 

system for trivial solution is determined as: 

 

 2 2 2

2 5 5 2

2 2 2

2 5 5 2

2 2

2 2

I R I R

I R I R

K K K K

K K K K





     


    

 
(56) 

If   is outside the region provided by Eq. 56, the trivial solution will be unstable. Thus, the 

region of instability is: 

 

 2 2 2 2 2 2

2 5 5 2 2 5 5 22 2 2 2I R I R I R I RK K K K K K K K           (57) 

This region is important because when the trivial solution is unstable, a non- trivial solution 

should be considered. Finally, using Eq. 41, the stability region is determined as: 

 

  2 2 2

2 5 5 22 2 2n I R I RK K K K        (58) 

4.  Conclusion 

In this study, nonlinear vibration of an axially moving string in thermal environment has been 

investigated. The axial velocity is assumed to be summation of a constant value and a small-

amplitude harmonic function. It is also assumed that there is a thermal balance between the 

system and the environment. Following modeling of the system which is suitable for many real 

systems, the equation of motion is derived using the Hamilton’s principle. The dimensionless 

form of the equation of motion is then derived and then solved by the MTS method. 

From the solution of linear problem, natural frequencies, mode shape functions and critical 

velocity for various values of effective parameters such as temperature and velocity of the 

system are obtained and tabulated. According to the results, natural frequencies and critical 

speeds decrease if the temperature increases. The justification is that the material becomes softer 

with increasing temperature. Also, the natural frequencies decrease if the axial velocity 

increases. The effect of nonlinear terms appears in higher order of solution. The solution of 

problem is found in three cases; Ω far from zero and 2 n , Ω close to zero, and Ω close to 2 n  

(the parametric resonance case). 

If Ω is far away from zero and 2 n , instability occurs when 2RK  is negative. For example, 

around the first mode, if the axial velocity is less than fifty percent of the critical velocity related 

to any temperature, the system becomes unstable and the amplitude increases with time. This 

description is valid for the non-ideal boundary conditions; because for ideal boundary conditions, 
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2RK  is zero and the amplitude remains constant over time. For this case, the nonlinear natural 

frequencies for the ideal and non-ideal boundary conditions are dependent on the amplitude of 

vibration. The difference between the ideal and non-ideal states decreases with increasing 

temperature. If speeds are close to zero and the critical velocity, the difference between nonlinear 

natural frequencies in ideal and non-ideal cases become very small and this difference is more 

when the speed is close to fifty percent of the critical velocity. It is found that, when Ω is close to 

zero, at some speeds, the system becomes unstable or stable for different temperatures. In this 

case, stability state is the same as when Ω is far from zero and 2 n . 

For the parametric resonance case, the region where the non-trivial solution exists is obtained 

analytically. The bifurcation diagrams for ideal and non-ideal boundary conditions are presented 

under the influence of temperature at various speeds. The results show that for non-ideal 

boundary conditions, at any temperature near critical velocities a bifurcation phenomenon 

occurs, whereas it does not occur at lower velocities. On the other hand, with ideal boundary 

conditions, bifurcation phenomenon occurs always.  
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