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In the present manuscript, the second strain gradient (SSG) is utilized to 

investigate the primary resonance of a nonlinear Euler-Bernoulli nanobeam 

is analyzed in this paper for the first time. To that end, the second strain 

gradient theory, a higher-order continuum theory capable of taking the size 

effects into account, is utilized and the governing equation of the motion for 

an Euler-Bernoulli nanobeam is derived with sixteen higher-order material 

constants. Then by implementing the Galerkin’s method,the Duffing 

equation for the vibration of a hinged-hinged nanobeam is obtained and its 

primary resonance is studied utilizing the method of multiple scales. The 

size effects and impact of various system parameters on the amplitude of the 

response are then investigated for three different materials and the results are 

compared to that of the first strain gradient and classical theories. The results 

of this manuscript clearly shows that the nonlinear vibration of a second 

strain gradient nanobeam is size-dependent and although the difference 

between the results obtained by the second strain gradient theory and the 

first strain gradient theory is negligible for thicker beams, as the thickness 

decreases, the difference becomes more prominent. Also, the effects of 

nonlinearity on the forced vibration nonlinear response of an SSG beam are 

investigated and some observations are reported.  
© 2019 Iranian Society of Acoustics and Vibration, All rights reserved. 
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1. Introduction 

Nowadays, the growing interest in using micro- and nano-electromechanical systems (MEMS 

and NEMS) such as shock sensors [1] micro-actuators [2], bio-MEMS [3] and so on have made 

them interesting fields of research and hence, scholars have shown great interest in modeling 
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static and dynamic behaviors of different elements of such structures. When the dimensions of a 

beam reduces to the sub-micron level, size-dependent behavior will arise [4] and the classical 

theories become incapable of taking the size-dependency of such small-scale structures into 

account. Therefore, the need for a non-classical theory capable of doing so arises and hence, 

various higher-order continuum theories such as the higher-order gradient theories and couple 

stress theory have been proposed to consider higher-order stresses in addition to the classical 

stress and predict the size-dependent mechanical behavior of small-scale structures in which, 

aside from the classical material parameters, there may exist some higher-order length-scale 

parameters in the corresponding constitutive relation. 

Couple stress theory which was proposed by Koiter and Mindlin in the 1960s [5, 6], introduces 

two higher-order material parameters in addition to the Lame constants in the constitutive 

equations. The definition of these constants makes the couple stress theory suitable for predicting 

the size-dependent behaviors. Su and Liu [7] used the couple stress theory and proposed an 

effective dynamic continuum model to investigate the behavior of free vibrations of periodic 

cellular solids. 

 In 2002, the modified couple stress theory with only one higher-order material constant was 

proposed by Yang et al.[8]. Based on this theory, he developed a linear elastic model for 

isotropic materials. Using the Modified couple stress, Park and Gao[9] presented a new model 

for the bending of an Euler-Bernoulli beam model using the minimum total potential energy 

principle. Later, a nonlinear Timoshenko beam model based on the modified couple stress theory 

was developed by Asghari et al.[10]. Furthermore, the modified couple stress modelling of 

functionally graded Euler-Bernoulli and Timoshenko beams was developed by Asghari et al. [11, 

12]. 

In 1965, a more general form of the strain gradient theory, namely, the second strain gradient 

theory (SSG) was proposed by Mindlin[13]. In doing so, he introduced sixteen higher-order 

material constants assuming the potential energy-density to be a function of the first and second 

derivatives of the strain tensor. Using this theory, a geometrically nonlinear Euler-Bernoulli 

beam model was presented by Karparvarfard et al.[14]. In a more recent article, the second strain 

gradient theory was used by Momeni and Asghari to develop a size-dependent formulation for 

the functionally graded micro/nanobeams[15]. Furthermore, in 2012, the analytical formulation 

of the sixteen material constants associated with the second strain gradient theory corresponding 

to fcc metals was given in terms of the parameters of Sutton-Chen interatomic potential function 

by Shodja et al.[16]. 

 In 1968, the (first) strain gradient theory was proposed by Mindlin [17] as a special case of the 

strain gradient theory in which the strain energy-density was taken to be only the function of the 

first derivative of the strain tensor. This reduced the number of higher-order material constants in 

the corresponding constitutive equations from sixteen to five. Ansari et al. [18] incorporated this 

theory, as the most general strain gradient elasticity theory, into classical Timoshenko beam 

theory and developed a size-dependent beam model to investigate the static and dynamic 

behavior of functionally graded nanobeams. 

 Another version of the strain gradient theory with three higher-order material constants was 

suggested by Lam et al. [19] based on which, Asghari et al. [20] developed a nonlinear size-

dependent Euler-Bernoulli beam model. In another article, Mohammadi and Mahzoon [21] 

presented a model for postbuckling of Euler-Bernoulli microbeams and showed that small-scale 
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parameters have a significant influence on the postbuckling behavior of microbeams. 

Furthermore, strain gradient theory was used by Mohammadi and Sepehri [22] to investigate the 

bifurcation behavior of an Euler Bernoulli micro/nanobeam. 

In comparison to the first strain gradient, much fewer attempts have been made to predict 

mechanical behavior of a system using the second strain gradient theory and although some 

researchers have used this theory to present the Euler-Bernoulli [23] and Timoshenko [15] beam 

models, a report on the nonlinear vibration characteristics of a nanobeam modelled by the SSG 

theory is yet to be made. Hence, in this paper, the nonlinear primary resonance of a hinged 

second strain gradient Euler-Bernoulli nanobeam made of three distinct materials is investigated 

and the effects of various system parameters such as the excitation amplitude on the vibrational 

behavior of the system are illustrated. Further, it is found that there is a critical value for the 

frequency of the system after which the vibration of the SSG micro/nanobeam becomes 

multivalued. 

2.Governing Equation 

According to the second strain gradient theory presented by Mindlin[13], the strain energy 

density    is a function of three-polyadic: 

 

                . (1) 

 

in which,    is the classical infinitesimal strain with six independent components and    and    

are the strain gradient and second strain gradient tensors, respectively. Taking   and   to be the 

gradient operator and the displacement vector, one may write: 
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in the previous equations, the components of the displacement vector   are denoted by   , while 

the components of the infinitesimal strain tensor  , the first strain gradient tensor   and the 

second strain gradient tensor   are designated by    ,      and       , respectively.  

Using the aforementioned definitions, the strain energy density for a linear isotropic centro-

symmetric material can be written as: 

 

    
 

 
                                                                      

                                                                 
                                                                     

 

(3) 

In eq (3), The two quadratic products of the classical infinitesimal tensor (  )  are denoted by   

and   , which are the well-known Lame constants. Besides, higher-order material constants    to 
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   are the constant coefficients of the quadratic products of the strain gradient (  ) components. 

Furthermore, length-scale parameters   to    are the coefficients of seven products of the second 

strain gradient components (  ) and   to    are the coefficients of the product of    components 

with   . The remaining length-scale parameter (  ) is a modulus of cohesion presented by 

Mindlin[13]. It should be noted that the second strain gradient is responsible for the surface 

tension, while the coupling terms    to    are responsible for the free surface effects [24]. Also, it 

is important to know that the five coefficients   to    have dimension of force and are also 

present in Toupin’s strain gradient theory [25], while the coefficients    to    and    to    are of 

the dimensions of force times squared length and force, respectively and    has the dimension of 

force. 

 
Fig 1. An Euler-Bernoulli hinged-hinged beam with height h, width b and uniform rectangular cross section. 

An Euler-Bernoulli hinged beam with uniform rectangular cross section, height   and width, 

subjected to a distributed load      and axial load   , is shown in Figure 1. For such a beam, 

based on the Euler-Bernoulli beam theory, the components of the displacement field can be 

described as: 
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Combining (2) with (4) the nonzero components of tensors are obtained as below: 
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Implementing the von Karman assumption, one may write: 
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In (6) the term 
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accounts for the mid-plane stretching. 
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Then, after writing the expressions for the strain energy ( ), the kinetic energy ( ) and the work 

done by external forces ( ), Hamilton’s principle can be utilized to derive the governing 

equations for the motion of the nanobeam. 

 
∫    

  

  

            (7) 

Applying Hamilton’s principle, the equation of motion of the second strain gradient nonlinear 

Euler-Bernoulli beam is obtained: 
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and  ,   ∫     
 

 and A are density, the moment of inertia about y-axis and area, respectively. 

The term  
  

  
 is the force exerted on the system by a viscous damper with the damping 

coefficient C. 

Also, within the framework of the second strain gradient theory, the boundary conditions can  be 

defined as below. It is worth mentioning that for the end-section of the beam, only one of the two 

types of boundary conditions, namely essential (geometric) and natural (loading) can be 

imposed.  
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Note that in the preceding equations  ̅ and  ̅ are the classical axial and shear resultants, 

respectively and  ̅ is the resultant moment acting on the end section.  ̅,  ̅,  ̅ , and  ̅ are the 

resultants of  higher-order stress components. As can be seen in Eqs.(10)-(16), the SSG theory 

suggests that higher-order boundary conditions can pose a restriction on the second and third 

variations of the deflections as well as the deflection and slope. On the contrary, the classical 

theories only restrain the deflection and the slope of the ends, while the first strain gradient 

theory imposes constraints on the second variation of the deflection as well, but neglects the third 

variation.  

1.1 A Hinged-Hinged Beam 

For a beam with hinged-hinged boundary conditions, one may write: 

                  
(17) 

                  
(18) 

It should also be noted that in a hinged-hinged beam, the support does not resist against any 

strain, strain gradient, rotation or curvature. As a consequence, one may assume all the resultants 
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of the classical and higher-order stress components to be zero, i.e  ̅   ̅   ̅    ̅    ̅   ̅  

 . In other words, the work conjugates to 
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neglected and accordingly, equations (11), (12), (14), (15) and (16) are easily satisfied. 

Now, by implementing (17) and (18) in (10)-(16) and performing some mathematical 

manipulations, the following eighth-order differential equation can be obtained: 
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To have a parametric study of the mechanical and vibrational behavior of the SSG nanobeam, a 

normalization of the governing equations and the boundary conditions is necessary. To that end, 

the following nondimensional parameters are defined: 
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where   is a constant that depends on the boundary conditions. The values of   for hinged-

hinged and clamped-clamped boundary conditions are reported to be   and 4.73 

respectively[26].  

By substituting the normalized parameters in the governing equation, Eq. (19) can be described 

in nondimensional form as: 
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3. Primary Resonance 

With the aim of investigating the primary resonance of a second strain gradient nanobeam, 

Galerkin’s Method will be utilized to transfer the governing equations into time-domain. After 

multiplying both sides of Eq.(22) by the corresponding mode shape and integrating from 0 to 1, 

the nonlinear duffing equation is reached. Note that for a hinged-hinged nanobeam, the mode 

shape is                 . For the case of primary resonance, the initial axial load is 

taken to be zero, i.e.     . Further, to investigate the forced vibration, the external harmonic 

force is taken to be of the form  ̂             . Hence, the governing equation can be written 

as: 

  ̈                ̇              
(24) 

Where 
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Now by implementing the multiple-scale method [27] the following system of linear equations 

based on different powers of   can be obtained: 
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The general solution of the    can be written as: 

                    ̅                (29) 

where  ̅  is the complex conjugate of A. 

Now, by substituting    from(29) in (27), it is found that any particular solution of (27) has a 

secular term containing the factor            unless: 

        
(30) 

Elimination of the secular terms in(28) gives: 

           ̅           
(31) 

 

In order to eliminate the secular terms in (31), A is written in polar form as below: 

   
 

 
          (32) 

 

Substituting (32) in(31) and separating the real and imaginary parts, the set  
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Now by considering the steady-state condition for the motion,        , the system of 

equations for the system takes the form of: 
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By squaring and adding (35) and (36), the frequency response equation is obtained as: 
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In order to get numeric results, the dimensions of the micro/nanobeam are taken to be       , 

      ,and       . Furthermore, the nanobeam is assumed to be made of three distinct 

materials of aluminum, nickel , and gold, for which the Young Modulus and material length 

scale parameters are listed in Table 1 and Table 2 [16] : 

Table 1.Young modulus and higher-order material constants ai’s for Al, Ni, and Au [28] 

 E (GPa) aT (   a1(      a2 (      a3(      a4(      a5(      

Al 68.9 4.04 0.1407 0.0027 -0.0083 0.0966 0.2584 

Ni 200 3.52 0.2386 0.0134 0.0013 0.0934 0.2462 

Au 78 4.08 0.2994 0.0944 0.0944 0.0458 0.0312 

 

Table 2. Higher-order material parameters bi’s and ci’s for Al, Ni and Au [28] 

 b1 b2 b3 b4 b5 b6 b7 c1 c2 c3 

Al 0.7927 0.0644 -0.1943 -0.0009 -0.0009 16.1566 48.5291 0.5041 0.3569 0.1782 

Ni 0.8185 0.0821 -0.2552 -0.0020 -0.0020 15.6264 46.9584 1.1567 0.7849 0.4744 

Au 0.1614 -0.0021 -0.0145 -0.0002 -0.0002 0.8134 2.4440 0.9941 0.5259 0.4413 

 

The frequency-response curve of a nonlinear second strain gradient (SSG) Euler-Bernoulli 

nanobeam is depicted in Figure 2. The size-dependency of the nonlinear forced vibration of a 

second strain gradient nanobeam is clearly visible from Figure 2, i.e. although the length-to-

thickness and width-to-the thickness ratio are kept constant, a change in the thickness also 

changes the amplitude of the response. It is also interpreted that by decreasing the 

aforementioned ratio, one can reduce the deviation of the nonlinear system from the linear state 

and hence the hardening nonlinearity of the nanobeam. The same deduction was carried out by 

[28] for a (first) strain gradient Euler-Bernoulli micro/nanobeam. 
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Fig 2. The frequency-response curve of a nonlinear SSG Euler-Bernoulli nanobeam for different values of      

The effect of the excitation amplitude on the frequency response curve of a primary resonance 

second strain gradient nanobeam is depicted in Figure3. It is obvious that a higher excitation 

amplitude leads to higher peak amplitude in a nanobeam in primary resonance.  It is also 

observed that the amplitude of excitation does not change the deviation from the linear state and 

hence it does not affect the nonlinearity of the system. Figure3 also clearly illustrates that a 

nonlinear vibrating system can have up to three answers of which two are stable and one is 

unstable. These stable and unstable solutions lead to the jump phenomenon which is one of the 

most prominent characteristics of a nonlinear system. The effect of the excitation amplitude on 

the jump height of the Aluminum nanobeam is also shown in Figure3. It is concluded that a 

system may attain higher jump heights by increasing the excitation amplitude. 

 
Fig 3. The frequency-response curve of an SSG nanobeam made of Aluminium for different values of excitation 

amplitude.
 

The frequency-response curve for three different materials of Aluminum, Gold ,and Nickel is 

shown in Figure 4 . On can observe that among these three elements, a nanobeam made of 

Nickel proves to have a higher maximum amplitude and jump height. So it is expected to present 

higher sensitivity when used in MEMS sensors. 
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Fig 4. Frequency-response curve for three different materials 

The response amplitude vs. the excitation amplitude of three systems made of different materials 

are presented in Figure5. It is seen that beams of the same size made of nickel and gold exhibit 

close behavior in the presence of primary resonance excitation. It is also concluded that the range 

of the multivalued region is much higher in nickel and gold nanobeams when compared to one 

made of Aluminum, i.e. for a wider range of excitation amplitudes, one can observe the 

multivalued response. 

 
Fig 5. The response vs. excitation amplitude curve for different materials 

In Figure 6 the effect of the detuning parameter  𝜎 on the response-excitation amplitude curve is 

shown. It is understood that there’s a critical value of the frequency after which the amplitude of 

the system is multivalued. It is observed in Figure 6 that increasing the excitation frequency of 

the nonlinear nanobeam, the deviation of the system response from the linear state also rises and 

thus, for a wider range of excitation amplitudes, the multivaluedness phenomenon can be 

witnessed.  
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Fig 6.Effect of the detuning parameter on the a-KQ diagram. 

3.1. Comparison with different higher-order theories 

Assuming the external load to be zero (KQ=0), one can illustrate the ratio of the second strain 

gradient nonlinear frequency of the nanobeam to the classic linear frequency, versus the ratio of 

the beam thickness to the lattice parameter as in Figure 7. Setting all bi’s and ci’s in the material 

length scales equal to zero, one can obtain the results based on the (first) strain gradient theory. 

Furthermore, assuming all the length-scale parameters to be zero will produce the results of the 

classical beam models. It is seen that the results of the presented paper are in good agreement 

with the ones obtained by Karparvarfard et. al. [14]. It is also seen that the size effects are 

considerable in obtaining the frequency of the nanobeam only when the thickness is small. 

Figure7 also predicts higher nonlinear frequency in the second strain gradient theory in 

comparison to the strain gradient theory which implies that a second strain gradient nanobeam 

may have a rather stiffer behavior compared to a (first) strain gradient beam. 

 
Fig 7. The Frequency ratio of an SSG nanobeam in comparison to SG and classical theories. 

4.Conclusion 

In this work, the primary resonance of a second strain gradient hinged-hinged Euler-Bernoulli 

nanobeam is investigated. The second strain gradient theory is a very powerful higher-order 



H. Mohammadi et al. / Journal of Theoretical and Applied Vibration and Acoustics 5(1) 55-68 (2019) 

67 

 

continuum theory capable of taking size effects into account. This theory accounts for surface 

tension and adds sixteen higher-order material parameters in addition to the Lame constants. In 

the framework of the SSG theory, the governing equation of motion has been obtained using 

Hamilton’s principle. Then, after implementing the Galerkin’s method, the method of multiple 

scales has been applied to reach the frequency-response curve for nanobeams made of three 

different materials. Among these three materials, the Aluminium nanobeam exhibited a stiffer 

dynamical behaviour and lower maximum amplitude and jump height. It is also shown that the 

nonlinear vibration of a second strain gradient Euler-Bernoulli nanobeam is size-dependent and 

that decreasing the thickness not only makes the system stiffer, but also reduces the hardening 

nonlinearity. The size effects diminish as the thickness of the beam increases. Further, it is 

shown that increasing the amplitude of the excitation increases the response amplitude and 

there’s a critical value for the excitation frequency of the system after which the response 

becomes multivalued. The nonlinear frequency of the presented model is then compared to the 

previously published articles and a good agreement between the SSG theory and the strain 

gradient theory is observed. 
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