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In this paper, condition monitoring of a geared rotor system using finite 

element (FE) model updating and particle swarm optimization (PSO) 

method is considered. For this purpose, employing experimental data from 

the geared rotor system, an updated FE model is obtained. The geared rotor 

system under study consists of two shafts, four bearings, and two gears. To 

get the experimental data, piezoelectric accelerometers are mounted on the 

bearings to extract the natural frequencies. Also, mass, stiffness and 

gyroscopic matrices can be obtained using FE method. By extracting these 

matrices, natural frequencies and mode shapes are also obtained from 

solutions of an eigenvalue problem. Having the first flexural four natural 

frequencies from experimental modal analysis as the objective, FE model of 

the geared rotor structure is to be updated. Solving sensitivity equations 

iteratively, model updating is performed to predict the required changes in 

parameters of the model. In the next stage, some defects are introduced into 

the experimental setup and the resulting natural frequencies are set as the 

reference for model updating purpose. Therefore, the changes in the model 

parameter with respect to a healthy system is monitored. Using PSO method, 

fault detection in a geared rotor system is performed. Model updating and 

PSO are able to predict the types and values of damages created in the 

geared rotor system. In general, the model updating method is simpler and 

computationally more efficient for industrial equipment. However, particle 

swarm optimization provides more accurate results with higher 

computations. 
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1. Introduction 

Gears are widely used in industrial, automotive, and daily-life applications for mechanical power 

transmission. Depending on the design of the system, gears offer advantages in producing high-

speed ratio, changing the torsion direction, and transmitting a high load efficiently. Gear failure 

is an unwanted event, as it terminates the functionality of the gear and may entail serious and 

costly consequences. 

Therefore, it is important to monitor the health of gearbox systems and detect their faults as early 

as possible. Early detection allows proper scheduled shutdown and maintenance to prevent 

catastrophic failure and consequently guarantees a safer operation and higher cost reduction[1]. 

There are mainly two types of approaches for gear fault diagnostics: signal-based and physical 

model-based methods. Signal-based methods purely rely on the analysis of historical data 

collected from gearboxes to diagnose and/or predict their health condition. The measured data 

could be vibration signals, torque load signals, acoustic signals, metal scan data, gear weight loss 

data, gearbox strain signals, and gear damage images. Different signal-based methods have been 

developed for gearbox fault diagnostics [2-5]. 

In physical model-based methods, a virtual system is built to mimic an existing object based on 

human understanding of this object. The physical models of gearboxes can be divided into two 

subsets: modulation based models and dynamics based models. Modulation based models are 

developed via the understanding of amplitude modulation and frequency modulation 

characteristics of vibration signals. The studies on the development of modulation based models 

are available in [6-8]. Dynamics based models are developed based on a fundamental analysis of 

a dynamic model of the gear mechanism. Therefore, dynamic characteristics in various health 

conditions can be simulated. Then the fault symptoms can be revealed and summarized for fault 

detection and diagnosis. Parey and Tandon [9] reviewed spur gear dynamic models and 

considered the gear faults such as wear and spalling. Bartelmus [10]  considered mathematical 

modelling and computer simulations for supporting fault detection in gearbox systems. Lei et al. 

[11] reviewed condition monitoring techniques for fault diagnosis of planetary gearboxes. Ma et 

al [12]. reviewed dynamics of cracked gear systems including crack propagation path modelling 

and dynamic models for vibration analysis of cracked gear systems. Lee et al.[13] considered the 

coupled lateral and torsional vibration characteristics of the rotor-bearing system using finite 

element model of a gear pair, bearings, and shafts for providing the mechanism of the 

characteristic changes. 

Finite Element (FE) model updating is a procedure aimed at calibrating the FE model of a 

structure in order to match the experimental results. Introduced in the 1980s, it turned out to play 

a crucial role in the design, analysis and maintenance of aerospace, mechanical and civil 

engineering structures[14, 15]. In structural mechanics, model updating techniques are used in 

conjunction with vibrations measurements to determine unknown system characteristics, such as 

material properties, constraints, etc. A further important application of model updating, within 

the field of structural health monitoring, is damage detection [16, 17]. Damage can be identified 

based on the assumption that its presence is associated with a decrease in the stiffness of some 

elements, with consequent changes to the structure modal characteristics. Explanation of 

sensitivity method in the FE model updating is provided by Mottershead et al.[18]. An example 

of model updating of a helicopter airframe is also discussed in the paper. 
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Particle swarm optimization (PSO) was proposed by Kennedy and Eberhart as a population-

based stochastic optimization technique inspired by the social behavior of bird flocking or fish 

schooling[19]. PSO is an algorithm based on the group (swarm) behavior. The algorithm 

searches for the optimal value by sharing the cognitive and social information among the 

individuals (particles) in the global solution space. The popularity of PSO is growing with 

applications in diverse fields of engineering, biomedical and social sciences [20]. Some of the 

recent applications of PSO in engineering include machinery condition monitoring and 

diagnostics [21]. 

In this paper, condition monitoring of power transmission gears by model updating method and 

PSO is considered. The research includes two parts: 1( simulating the geared rotor system by FE 

method to obtain modal characteristics of the system, 2( extracting modal characteristics of the 

experimental setup by piezoelectric accelerometer. In this part, model updating is applied to 

achieve the updated model of the structure and then to detect damages in the system. The 

advantage of model updating and PSO is to detect damages without simulating the fault and it 

only works by the differences in modal characteristics. Hence, the differences in the first flexural 

four natural frequencies are considered. The sensitivity method in FE model updating is used. 

The sensitivity method is based upon linearization of the generally non-linear relationship 

between the measurable outputs such as natural frequencies, mode shapes, or displacement 

responses of the model parameters in need of emendation. Also, in PSO method an error function 

as a difference between the modal data obtained from computer simulation and experiment is 

defined. The estimated parameters are attained by minimizing the error function with respect to 

the tuning parameters. Finally, the results of two methods are compared in the final section. 

2. Coupled finite element model of a geared rotor system 

The configuration of the geared rotor-bearing system is shown in Fig. (1). Two flexible shafts 

with the gear pair, as two rigid disks, are modelled. The bearings are modelled as flexible 

elements with known stiffness coefficient. 

 
 

Fig. (1). Geared rotor-bearing system Fig. (2). degrees of freedom of each nodal point 

The equations of motion for the system are described in a fixed reference frame xyz. Fig. (2) 

shows a single shaft system with the rigid disk in y-z plane. Each shaft is divided into four 

elements and five nodes. At each nodal point of the shaft, five degrees of freedom are considered 



M. Farrokhnia et al. / Journal of Theoretical and Applied Vibration and Acoustics 5(2) 95-114 (2019) 

98 

 

in which the xU
 and yU

 are lateral displacements along x and y directions, respectively. Also x  

and y  are rotational and z  is torsional angles about ,x y  and z axes, respectively. 

Neglecting the vibrations along axial direction of the shaft, the flexural and torsional 

displacement vectors { }e

flq  and { }e

toq for each rotor element can be defined as: 

  
T

e

fl xi yi xi yi xj yj xj yjq U U U U     

(1) 
  

T
e

to zi zjq =    

The indices i and j indicate the beginning and the end of the element (e). The components of the 

system include the gear pair, bearing supports and rotor shafts whose equations of motion are 

introduced in the following section. 

2.1. Finite element model of the rotor 

In this section, equations of motion for elements are developed by Lagrange’s equation. Rotor 

elements are considered as Euler-Bernoulli beams. The flexural potential energy of the rotor 

element at the position "s" can be calculated from [7]: 

 
   

1

2

T T
e e

e a fl fl fl fldU EI q q ds           (2) 

where E  represents Young's modulus, aI
 is the moment of inertia of the beam about the x-axis 

and [ fl 
] is the second derivative of the flexural shape function matrix [ fl

] corresponding to 

the eight translational and rotational degrees-of-freedom beam element
{ }e

flq
. The flexural shape 

function matrix for the element with the length " "l at the position "s" is shown. 
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s
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s s s s
l

l l l l

   


   

 

 


 

 
      

 

 
     

 

 (3) 

Also, the rotational shape function matrix is calculated. 1 2 3, ,    
and 4 

 are the derivative of 

translational shape function matrix with respect to "s". 

 
  1 2 3 4

1 2 3 4

0 0 0 0

0 0 0 0
ro

   


   

     
      

 (4) 
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The torsional potential energy of the rotor element at the position "s" can also be obtained 

by[22]: 

 
      

1

2

T Te e

e t p to to to todU G I q q ds    (5) 

where tG
 represents the shear modulus, pI

 is the polar moment of inertia per unit length of the 

rotor and [ to ] is the first derivative of the torsional shape function matrix [ to ] corresponding to 

two torsional degrees-of-freedom beam elements
{ }e

toq
.  

 
 

1 11

1 1
to

l


 
  

 
 (6) 

The element potential energy of the beam is calculated by integrating over the length ' 'ds  which 

is the thickness of a sliced disk from the shaft at the position ' 's  in Eq. (2) and Eq. (3). 

 
   

1

2

T
e e e

eU q K q     

(7) 
  

T
e

xi yi xi yi zi xj yj xj yj zjq U U U U       

where [ ]eK  is the element stiffness matrix including flexural stiffness matrix 
[ ]e

flK
 and the 

torsional stiffness matrix
[ ]e

toK
. 

 

0

0

l

T
e

fl a fl fl

l
T

e

to t p to to

K EI ds

K G I ds

 

 

           

           





 (8) 

The kinetic energy of the element is computed as the sum of the flexural and torsional kinetic 

energy. The kinetic energy of the beam with the length l  is calculated as follows: 

 
       

   

21 1 1

2 2 2

1

2

T T
e e e e e e e

fl fl fl fl p fl fl

T
e e e e

to to to to

e e e

fl to

T q m q I l q n q

T q m q

T T T

         

   

 

 (9) 

 

 Where, 
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0
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ds n I ds                     

 (10) 

In Eqs. (6) and (7), the symbol{ }represents a column vector and 
    represents a row vector. 

Translational, flexural and rotational shape functions are denoted by 
,fl ro 

 and to  for the 

Euler-Bernoulli beam. µ is the mass of the shaft per unit length, r  is the shaft radius and pI
 is 

the polar moment of inertia.  

Substituting Eqs. (4) and (6) into the Lagrange’s equation, the equations of motions for the 

assembled elements of the geared rotor structure will be obtained as follows: 

      [ ] [ ] [ ] { }s s s s s s sm q g q k q f    (11) 

where, 
 sf

is the force vector calculated by the virtual work principle[23]. The mass [
sm ], 

gyroscopic [
sg ] and stiffness [

sk ] matrices of the shaft are obtained by assembling the elements 

matrices with ten degrees of freedom. 

3. Condition Monitoring  

3.1. Model Updating 

Model updating process for condition monitoring includes two parts: model tuning and damage 

identification. In the first part of the process, by using the measured vibration data from the 

undamaged state of a structure, the initial FE model is tuned to obtain an updated model in the 

undamaged state denoted as the intact model (undamaged model). Then the intact model is 

updated to obtain a calibrated model in the damaged state using the measured vibration data from 

the damaged state of the structure. Damaged parameters are identified by comparison of 

undamaged and damaged models. Modal characteristics of a structure are described by 

eigenvalue equations as: 

 ([ ] [ ]){ } 0i iK M   , i =1…,n (12) 
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where [ K ] and [ M ] are stiffness and mass matrices of the structure, respectively. i  is the i
th

 

eigenvalue of the system equal to the square of natural frequency, { i } is the i
th

 mode shape 

(eigenvector) of the intact structure and n is the number of degrees of freedom for the structure. 

The mode shapes are normalized with respect to the mass matrix. 

Damage can cause changes in the stiffness matrix of a structure by an amount of [ ]K . Change 

in the mass matrix due to the damage is neglected [24] . The variations in the stiffness matrix 

results in a change in the eigenvalue i  and also the corresponding eigenvector { i }. 

Therefore, the eigenvalue equation of the damaged structure is given by: 

 ([ ] [ ] ( )[ ])({ } { }) 0i i i iK K M          (13) 

By pre-multiplying Eq. (10) by transpose of the mode shape vector 
{ }T

i and applying 

orthogonally condition, the following equation is obtained for variation of the squared natural 

frequency [25]: 

 ({ } [ ]{ } { } [ ]{ })

(1 { } [ ]{ })

T T

i i i i
i T

i i

K K

M

     


 





 (14) 

Since the variation of each mode shape vector is orthogonal to the corresponding mode shape 

and due to the orthogonal property of the ith mode shape with respect to the rest of mode shapes, 

the term  { } [ ]{ }T

i iM   vanishes. Measuring the mode shapes of experimental structures requires a 

complex sensor set up and also special sensors such as laser Doppler velocimeter (LDV). Hence, 

due to the complexity of the measurement and small amount of variations, all terms in Eq. (11) 

associated with the variations in the mode shapes have been neglected by many researchers 25. 

Therefore, the variation of the ith eigenvalue was evaluated by excluded mode shape (EMS) 

changes method as: 

 
1 1{ } [ ] { }T

i i n n n i nK       (15) 

The sensitivity equation is extracted from Eq. (12) as:  

 
1 1{ } [ ] { }n n n nS p     (16) 

Where the sensitivity matrix is shown by [S] and{ }p illustrates the changes in each parameter. 

Also { } is the vector of eigenvalues. The number of eigenvalues is denoted by n . Solving 

sensitivity equations by the least square method results in the minimum parameters changes. 

3.2. Improved Sensitivity Equation 

Derivation of the eigenvalue equation Eq. (9), with respect to the tuning parameter is as follows: 

 ([ ] [ ]){ } ([ ] [ ]) { }i i i iK M K M         (17) 

where 
{ }i 

is the rate of changes of ith mode shape. The eigenvectors of the system introduce an 

orthogonal space vector that can be used to represent any vector of the same order by their linear 

combination[25].  
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1

{ } { }
n

i ij j

j

  


   (18) 

where ij
is the participation factor of the 

thj mode shape used in the calculation of the rate of 

change of 
thi mode shape. By substituting Eq. (15) into Eq. (14), pre-multiplying by 

{ }T

k  for 

k i and applying the orthogonal property of mode shapes with respect to the mass matrix: 

 { } ([ ] [ ]){ }

( )

T

k i i
ik

i k

K M
k i

  


 

 
 


 

(19) 

where, [ ]K 
and [ ]M 

are the rate of changes of the stiffness and mass matrices, respectively. For

k i , derivation of the normalized mode equation 
{ } [ ]{ } 1T

i iM  
, results in: 

 { } [ ]{ } { } [ ]{ } { } [ ]{ } 0T T T

i i i i i iM M M           (20) 

Substituting Eq. (15) into Eq. (17) and applying the orthogonal property yields: 

 { } [ ] { }

2

T

i i
ii

M 



   

(21) 

Using Eqs. (16) and (18), the rate of change of the 
thi  mode shape can be calculated from the 

derivatives of stiffness and mass matrices, together with the eigenvalues and eigenvectors for all 

the modes.  

Changes in the mode shapes of the system due to the damage can be evaluated using a first-order 

series as [25]: 

 

1

{ } { }
n

i ij j

j

  


  

(22) 
 { } [ ]{ }

, 0
( )

T

j i

ij ii

i j

K
j i and

  
 

 
  


 

As mentioned before, any variations in the mass matrix were assumed to be negligible, therefore

0ii 
. Now, Eq. (11) can be rewritten to determine the changes of the natural frequencies 

(eigenvalues) by including the changes of mode shapes through Included Mode Shape (IMS) 

changes method as [25]: 

 

1

{ } [ ]{ }
{ } [ ]{ } { } [ ] { }

Tn
j iT T

i i i i j

j i j

K
K K

  
      

 

 


  (23) 

By using this algorithm to consider the mode shape changes in the damage detection process, the 

sensitivity of natural frequencies is characterized as a second-order element level function of the 

stiffness reduction. Therefore, because of the nonlinear dependency of the parameters in Eq. (19) 

the “fmincon” function in Matlab was used to determine the change of the stiffness. 
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3.3. Particle swarm optimization  

Particle Swarm Optimization (PSO) method applies the concept of social interaction to problem-

solving. In PSO, a swarm of n individuals communicates either directly or indirectly with one 

another search directions. Particles can be seen as simple agents that fly through the search space 

and record (and possibly communicate) the best solution that they have discovered. A particle 

(individual) movement is composed of three factors: (1) current position (location) of the particle 

in the search space, (2) location of the best solution found so far by the particle itself and (3) 

location of the best solution found so far by all the particles [20]. So the kinematic parameters of 

the particle can be stated as: 

 , ,

1 1 2 2( ) ( ( )i i i best i g best i

j j j j j j

i i i

j j j

v wv c r x x c r x x

x x v

    

 
 (24) 

where 

i

jx
 and 

i

jv
 correspond to the values of the position and velocity vectors at iteration i  for 

the particle j  are generated at time t . 
,i best

jx
 is the location of the best solution found so far by 

the particle itself  and 
,g best

jx
 The location of the best solution found so far by all the particles. As 

the algorithm is in progress, the position and the velocity of the particle are created by the 

algorithm mentioned in Eq. (20), where 1r , 2r  are the random coefficients in the interval of [0, 1] 

and 1 2,c c
 are the learning coefficients. 

The objective function of the optimization problem is defined as squares of the differences 

between the experimental and model natural frequencies: 

 4
2

, ,

1

( )A i E i

i

Z f f


   (25) 

where Af
 and Ef  represent the natural frequencies of the model and experimental setup, 

respectively. The summation is performed over four initial flexural natural frequencies. 

4. Results and discussions 

4.1. Numerical results  

The rotor system consists of two shafts, four bearings and two gears as seen in Fig. (5). The 

driving shaft is connected to an AC motor by a coupling. The structure is also modeled 

numerically using FE method. Within the simulations, each shaft is divided into four beam 

elements with five nodes. Therefore, the FE model of the whole structure consists of 10 nodes 

and 8 elements.  The shafts are made of steel with Young’s modulus of 200GPa  and the mass 

density of 7800 kg/m3. The gears are also made of aluminum with Young’s modulus of 70GPa  

and the mass density of 2700 kg/m3. The two gears are simulated as two rigid disks with a 

concentrated mass located on nodes 3 and 5. Contact of the gears is modelled by employing 
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some springs with unknown gear translational ( tK
) Fig. (3) and rotational ( rK

) Fig. (4)  contact 

stiffness matrices. 

 

 

Fig. (3).  Gear translational contact stiffness Fig. (4). Gear rotational contact stiffness 

 

Also, bearings are modelled by springs with a known stiffness. Moreover, the mass, stiffness and 

gyroscopic matrices are extracted according to the principles of rotor dynamics as mentioned in 

section (2). The initial values of tK  and rK  are approximated to be 2×10
7 

and 1.2×10
6
 N/m, 

respectively. The FE model with these parameters is defined as the initial model. These values 

are to be updated within the model tuning process. The tuned models are called actual. By 

applying the coupled flexural and torsional vibration FE model of the rotor geared system, free 

vibration analysis is carried out and the modal characteristics are obtained by solving the 

eigenvalue problem. The first flexural four natural frequencies of the initial model are shown in 

Table (1). 

 

4.2. Model verification of solving the sensitivity equation 

To verify the accuracy of  FE model and the solution of the sensitivity equation, the initial and 

actual models are defined. The actual model is obtained by the sensitivity analysis on two 

parameters tK  and rK . Therefore, the nominal value changes of the tK  and rK  are known for the 

actual model in comparison to the initial model. To obtain the values of parameters changes, the 

sensitivity equation must be solved for each parameter. The natural frequencies of the actual 

model are shown in Table (2). The amount of nominal and predicted changes of the parameters 

for 1 iteration of solving the sensitivity equation by least square method (lsqlin) and “fmincon” 

function in Matlab are compared in Fig. (5). In the least square method, the term of mode shape 

changes is omitted (EMS) and in “fmincon” method it is assumed to be a linear combination of 

eigenvectors for all modes (IMS).  
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Table 1. Natural frequencies of the initial model 

Mode No. 
Natural Frequency (Hz) 

(Analytical) 

1 34.33 

2 40.9 

3 48.25 

4 56.2 
 

Table 2. Natural frequencies of the actual model 

Mode No. 
Natural Frequency (Hz) 

(Analytical) 

1 32.15 

2 40.67 

3 48.13 

4 56.1 
 

   

 

 
 

Fig. (5). Nominal and predicted changes of the 

parameters for 1 iteration of solving the sensitivity 

equation 

Fig. (6). The actual model and predicted changes of the 

parameters for 50 iterations solving the sensitivity equation 

 

Table )3( shows the actual model and predicted values of updated parameters for 1 iteration of 

solving the sensitivity equation.  

Table 3. The actual model and predicted values  

 

Actual model 

value (N/m) 

Predicted value by lsqlin  

(N/m)  

Predicted value by fmincon 

(N/m) 

 
1.5×10

7 1.4041×10
7 1.4090×10

7 

 
1×10

6 9.9263×10
5 9.9216×10

5 

 

As it can be seen, the results of predicted values for 1 iteration solving the sensitivity equation is 

not accurate. Therefore, the number of iterations are increased to 50. The amount of nominal and 

predicted changes of the parameters are shown in Fig. (6). Table (4) shows the actual model and 

predicted values of updated parameters for 50 iterations solving the sensitivity equation by two 

abovementioned methods. 

tK

rK
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Table 4. Actual model and predicted values  

 

Actual model 

value (N/m) 

Predicted value by lsqlin  

(N/m) 

Predicted value by fmincon 

(N/m) 

 
1.5×10

7 
1.4849×10

7 1.4090×10
7 

 
1×10

6 
9.9414×10

5 9.9216×10
5 

 

As seen in Table (3) and Table (4), the results of the “fmincon” function is not as accurate as of 

the least square method. Therefore, the least square method with 50 iterations was used to predict 

the damage. Besides, natural frequencies of the experimental setup are extracted. In the 

following, the natural frequencies of the model are matched with the natural frequencies obtained 

from the experiment. Then, the intensity of the damage is obtained from the differences in the 

natural frequencies in the healthy and damaged modes. 

 

4.3. Experimental Results  

To verify the accuracy of the method in detecting damages in the presence of measured noise and 

modelling error, an experimental setup is used as illustrated in Fig. (7). In the experimental 

setup, four piezoelectric accelerometers were mounted on four bearings in the rectangle corners 

in X and Z directions to acquire time-domain data. After importing data into ARTeMIS software 

and applying the stochastic subspace identification (SSI) method, the flexural natural frequencies 

are obtained for the intact structure. Power spectral density (PSD) data obtained from ARTeMIS 

in the healthy condition is shown in Fig. (8). Also, the resultant flexural natural frequencies in 

healthy mode are shown in Table (5). 

 
 

Fig. (7). Experimental setup Fig. (8). PSD from ARteMIS in healthy 

condition 

The modal characteristics of the initial model are updated to the modal characteristics of the 

experimental setup. The value of each parameter changes is shown in Fig. (9). Table (6) shows 

the predicted values of updated parameters.  

tK

rK
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Table 5. Natural frequencies of the experimental setup 

in healthy mode 

Mode No. 

Natural Frequency (Hz) 

(Experimental) 

1 32.084 

2 40.67 

3 48.151 

4 56.207 
 

Table 6. Predicted values of updated parameters 

 

Initial model 

value (N/m) 

Predicted value  

(N/m) 

 
2×10

7 
1.4849×10

7 

 
1.2×10

6 
9.9414×10

5 

 

Differences between the measured and initial model natural frequencies are due to the modelling 

errors and differences in the tuning parameters between the initial model and the experimental 

setup. In this stage of model updating (model tuning) the unknown variables experience a wide 

range of variations.  

 

 

 

 

Fig. (9). Predicted changes of updated parameters 

In this paper, damage detection processes are done by model updating method solving the 

sensitivity equation for 50 iterations and PSO method. PSO is applied for a population of 40, 20 

iterations, and two tuning parameters. Personal and social learning coefficients and inertia 

coefficients are 2, 1.7 and 0.7, respectively. The results of damage intensity are calculated by two 

methods. 

 

4.4. Damage detection 

After obtaining the updated model of the structure, different types of damages are introduced in 

one of the gears of the experimental setup to demonstrate different damage regimes in the geared 

rotor system. Then flexural natural frequencies of the defected structure are obtained by 

ARTeMIS. Therefore, in this part, the parameters in the model are updated to match the natural 

frequencies of the model with that of the damaged setup. 

 

tK

rK
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4.4.1. Tooth breakage fault 

The tooth breakage fault is shown in Fig. (10). The flexural natural frequencies of the system in 

the presence of tooth breakage fault and the percent of frequency changes (PFCs) concerning the 

healthy mode are listed in Table (7). The parameter changes by model updating method and PSO 

are shown in Fig. (11) and Fig. (12). The predicted values of tK
 and rK

 by two methods are 

shown in Table (8). 

 

 

 

Fig. (10). Tooth breakage fault 

 

 

 
 

Fig. (11). Predicted values of damaged 

parameters by model updating 
Fig. (12). Predicted values of damaged parameters by 

PSO 
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Table 7. Natural frequencies of tooth breakage 

Mode No. Natural Frequency (Hz) 
PFC* 

 

(Damaged structure) 

1 31.75 -1.04 

2 40.38 -0.71 

3 47.26 -1.85 

4 54.64 -2.78 

* Percent of Frequency Changes 

 

Table 8. Predicted values of tK  and rK  

 
Model updating PSO 

tK

(N/m) 

71.3977 10  
71.4177 10  

rK

(N/m) 

54.9146 10  
55.5109 10  

 

 

4.4.1. Tooth crack fault 

The tooth crack fault is shown in Fig. (13). The flexural natural frequencies of the system with a 

cracked tooth and the PFCs regardingthe healthy mode are shown in Table (9). Changes in the 

parameters by model updating method and PSO are shown in Fig. (14) and Fig. (15). Also, the 

predicted values of tK
 and rK

 by two methods are listed in Table (10). 

 

Table 9. Natural frequencies of tooth crack 

Mode No. 
Natural Frequency (Hz) 

PFC 
(Damaged structure) 

1 30.86 -3.81 

2 40.43 -0.59 

3 46.88 -2.64 

4 55.27 -1.67 
 

Table 10. Predicted values of tK  and rK  

 
Model updating PSO 

tK (N/m) 71.2677 10  
71.2891 10

 

rK (N/m) 54.2096 10  
55.1159 10

 
 

 

 

 

 

Fig. (13). Tooth crack fault 
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Fig. (14). Predicted values of damaged  parameters by  

model updating 

 
Fig. (15). Predicted values of damaged parameters by 

PSO 

4.4.2. Missing tooth fault 

The missing tooth fault is shown in Fig. (16). Also, corresponding flexural natural frequencies of 

the system for this situation and PFCs with respect to the healthy mode are shown in Table (11). 

The variations of parameters by model updating and PSO methods are shown in Fig. (17) and 

Fig. (18). The predicted values of tK
 and rK

 by two methods are listed in Table (12). 

 

 

 

 Fig. (16). Missing tooth fault  
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Table 11. Natural frequencies of the missing tooth Table 12. Predicted values of tK  and rK  

Mode No. Natural Frequency (Hz) 
PFC 

 

(Damaged structure) 

1 30.47 -5.03 

2 40.23 -1.08 

3 46.48 -3.47 

4 54.9 -2.32 
 

 
Model updating PSO 

tK

(N/m) 

71.2054 10  
71.2255 10  

rK

(N/m) 

52.3968 10  
53.1630 10  

 

 

To get an insight into the applicability of the two condition monitoring methods, namely model 

updating, and PSO methods, the results are compared for three types of damages created on the 

gears. The stiffness changes indicate the percent of reduced contact stiffness for damaged gears.  

 

  
 

Fig. (17). Predicted values of damaged 

parameters by model updating 

 

Fig. (18). Predicted values of damaged 

parameters by PSO 
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The results of two methods are acceptable, although PSO predicts the changes in contact 

stiffness more precisely than the updating method because of the approximated terms in the 

model updating method. The intensity and type of damage are recognizable by Table (13).  

Results show a decrease in the contact stiffness of the gear due to the increase of the intensity of 

damage and its effects on system stability when the shaft rotational speed increases. The 

accuracy of the applied method is dependent on the measured flexural natural frequencies and 

efficiency of the optimization algorithm. In this study, the first flexural four natural frequencies 

are chosen and the results of two applied methods are approximately similar to each other that 

shows the accuracy of two methods. 

 

Table 13. Intensity and type of damage by model updating and PSO 

Type of fault 
Condition 

method 

 

Translational contact stiffness 

changes 

 

Rotational contact 

stiffness changes 

Tooth breakage 
Updating 0.052 0.512 

Optimization 0.047 0.451 

Tooth crack 
Updating 0.141 0.582 

Optimization 0.133 0.491 

Missing tooth 
Updating 0.182 0.762 

Optimization 0.176 0.683 

 

5. Conclusion 

This paper presented finite element model updating and particle swarm optimization (PSO) 

methods for damage detection in a geared rotor system based on measured flexural natural 

frequencies. Numerical results showed that the accuracy of a frequency-based method is 

dependent on the number of the measured natural frequencies and severity of the damage. 

Therefore, based on the literature review, four flexural natural frequencies were chosen. At first, 

the verification of the model was done by defining the actual model of the structure with known 

parameters. In the following, to obtain the updated model of the structure, the flexural natural 

frequencies of the model were matched the measured data. Then, a damage detection process 

was proposed to detect the changes in the system parameters. Model updating method for 50 

iterations of solving the sensitivity equation and particle swarm optimization was applied. 

Although the results of two methods were reliable, the optimization method was able to predict 

the parameters changes more accurately than the model updating method because of the 

neglected terms in the sensitivity equations. For the Fault of tooth cracks, the optimization 
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method predicts the reduced translational and rotational contact stiffness changes as 0.133 and 

0.491, compared to the model updating method which predicts the damage as 0.141 and 0.582. 
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