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Fault detection of rolling element bearing (REB), has a very effective 

role in increasing the reliability of machinery and improving future 

decisions for rotating machinery operation. In this study, a new 

method based on a convolutional neural network (CNN) is developed 

for fault detection of REB. Its performance will be compared with 

other artificial intelligence (AI) techniques, 2-layer, and deep 

feedforward neural network (FFNN). In this regard, a set of 

accelerated-life tests has been implemented on an experimental 

platform. The models are aimed to recognize the impact pattern in the 

raw signals generated by faulty REBs. The innovation of the present 

study is to convert the high-dimensional input as a raw temporal 

signal to low-dimensional output. The developed method does not 

need preprocessing of data.  Using several types of accelerated tests 

prevents overfitting. The result shows that the accuracy of the 

developed CNN-based method is 98.6% for all data sets and 94.6% 

for the validation dataset. The accuracy of the 2-layer FFNN is 85% 

for all datasets and 74.2% for the validation dataset and the accuracy 

of the deep FFNN is 82% for all datasets and 67% for the validation 

dataset. Therefore, the developed CNN-based method has better 

performance than the FFNN-based models.  
© 2021 Iranian Society of Acoustics and Vibration, All rights reserved. 
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1. Introduction 

Rolling element bearings (REBs) are the most popular source of failure in rotating machinery 

such as electro fans, induction motors, wind turbines, etc [1, 2]. It is noted that 40 to 50% of 
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failures in rotating machinery originate from REBs faults [3]. Intelligent fault diagnosis is to 

apply machine-learning theory such as artificial neural network (ANN), support vector machine 

(SVM), and deep learning to detect the type of fault in machinery [4-7]. In recent years, 

intelligent fault diagnosis became more attractive and received attention from academic and 

industrial researchers and became more useful for fault diagnosis of rotating machinery [8] 

therefore this highlight, developed machine learning widely [4, 5, 9, 10]. Deep learning is one of 

the best methods in machine learning and artificial intelligence that has characteristics such as 

automatic feature extraction, transferability, and best-in-class performance [11, 12]. In addition 

to deep learning, feed-forward neural networks (FFNNs) have been employed in condition 

monitoring and diagnosis [13, 14]. Deep learning has better accuracy, is robust to noise, and 

deals the overfitting better [12]. However, the ANNs have a lower computational cost [5]. The 

principle of ANNs training is based on error back propagation [15]. Increasing the number of 

layers in the FFNNs leads to increasing the overfitting and vanishing of gradient during training 

[16, 17]. Although deep learning originally was used for image classification [18], these days, it 

is widely employed for many applications, including machinery diagnosis.  

Frequency spectrum analysis is currently used to detect and determine fault existence [19]. 

However, the time-domain analysis is also employed for this purpose. Using frequency domain 

signal has limitations such as loss frequency of REBs fault frequency harmonics in the spectrum 

[20, 21]. A minor discrepancy in calculated REBs fault frequency by geometrical method [22], 

and existing fault frequency in the spectrum (around 1-2 percent) [23, 24]. Some defects such as 

lubrication problems do not exist in the frequency spectrum [25]. Background noise in the 

temporal signal is one of the limitations of diagnosis from the raw temporal signals. Time-

frequency domain also become a more popular subject for researchers in recent years [26, 27]. 

Besides the vibration signals, acoustic signals are also used for fault detection of REBs and other 

structures [28-31].  

In one study, Samanta et al. [32] used three optimized ANNs and extracted features from the 

time-domain signal to detect the faults of the pump. Their results show that the features and 

classifiers in the detection of the machine condition are effective. In addition, Samanta et al. [33] 

utilized time-domain features for REBs fault detection. Their method was based on feature 

extraction by ANN and SVM. The classifier parameters such as kernel parameter for SVM and 

number of nodes in ANN hidden layer are optimized with particle swarm optimization (PSO). 

They achieve high classification accuracy by using PSO for optimization. Zhang et al. [34] used 

a dataset on REBs accelerated-life test published by the center for intelligent maintenance system 

(IMS) at the University of Cincinnati [35] and a dataset of seeded-fault test on REBs published 

by Case-western Reserve University (CWRU) [36] and applied deep neural networks (DNN) to 

RER fault detection. The input of their model is a time-domain signal. In their method, temporal 

coherence is taken into consideration. This is considered to be an advantage for prognostics. 

Wang et al. [37] used an enhanced kurtogram for the diagnosis of REBs. The innovation of their 

study is kurtosis values calculated based on the power spectrum of the envelope signal. Signals 

were extracted from wavelet packet nodes at different depths. Shen et al. [38] used a fast and 

adaptive varying-scale morphological analysis for REBs diagnosis. They showed that their 

method identifies the cause of REBs defects even if the faulty impulses were partially covered by 

background noise. Saravanan et al. [39] employed the discrete wavelet transform (DWT) for 

feature extraction and used an ANN for classification. They showed that their method is reliable 

for the diagnosis of the gearbox in different conditions. In addition, rule-based methods and 
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signal processing techniques are used for the diagnosis of REBs [40-42]. In the literature, 

features such as mean, median, kurtosis, peak to peak, minimum and maximum of the signal, 

standard deviation, absolute mean, skewness, and crest factor are also used to describe the 

condition of REBs [43, 44]. These methods rely on hand-crafted time-consuming preprocessing 

of data. Some studies proposed that the classifier should have the ability to classify the data from 

the raw signal directly, without manual feature extraction in order to use all the information 

included in the signal [11, 45].  

The Convolutional neural networks (CNN) models such as AlexNet [46], LeNet-5 [47], 

GoogLeNet [48], VGGNet [49], are widely used for classification such as image classification 

[50] and diagnosis in recent years. The CNN models have a good capacity for noise removal 

[51].  

In one study in the field of REBs diagnosis, Pham et al. [52] implemented the CNN and vibration 

spectrogram in variable speed conditions of the shaft for fault detection. In their proposed 

method, vibration signals are represented by spectrograms to apply deep learning methods 

through preprocessing, using a short-time Fourier transform (STFT). Then, feature extraction and 

health status classification are performed by a CNN, VGG16. Their model can achieve high 

accuracy in the diagnosis of REBs. Wen et al. [53] used a data-driven method based on CNN for 

fault detection. they tested the proposed method on three datasets, including the motor REBs 

dataset, self-priming centrifugal pump dataset, and axial piston hydraulic pump dataset. they 

achieved high prediction accuracy for these purposes. Zhang et al. [54] developed a model based 

on CNN for REBs diagnosis in which the input of the model is a vibration signal. The novelty of 

their study is transforming the 1D signal into a 2D image. Their CNN-based model has better 

performance on the 2D image. Deep learning method such as CNN needs a large size dataset for 

training. Plakias et al. [55] proposed the attentive dense CNN to overcome this drawback of the 

deep learning method in needing a large amount of dataset. Their method considers the temporal 

coherence of the data sample by the combination of dense convolutional blocks with an attention 

mechanism. Jia et al. [56] proposed a method based on the DNN and auto-encoder (AE) for the 

diagnosis of REBs and planetary gearboxes. Their method consists of pre-training for the 

training of AE and fine-tuning for tuning all parameters of DNN. In their method the raw data 

needed to be transformed into the frequency spectra. Li et al. [57] proposed a 3-layer DNN based 

on the deep belief network for the diagnosis of REBs. In their REB experiments, the fault was 

created by grooving, so the fault features were completely obvious and their method may not be 

efficient for smaller types of REBs faults. Wang et al. [58] proposed the four-layer batch-stack 

AE. In their model, the frequency spectra of temporal signals are used as the input of the model. 

They achieve better performance with a small number of training epochs. Yousef Khodja et al. 

[59] proposed a method for the classification of REBs faults using the CNN and the vibration 

spectrum imaging. In their method, the normalized amplitudes of the spectral content extracted 

from segmented temporal signals were transformed into spectral images. Time-moving 

segmentation window is used for this purpose. The spectral images are used as input of the CNN 

for training and testing.  

According to the literature, in addition to the frequency domain and time-frequency domain, the 

temporal signals are also used for the diagnosis of REBs. In the field of using the temporal signal 

for diagnosis, some studies used the preprocessing technique to achieve better accuracy. The 
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mentioned studies used limited REBs datasets. In these cases, overfitting is possible to happen 

when the models are trained and tested on the small size of the datasets.   

The aim of this study is automatic detection of REBs fault existence in the raw temporal signals. 

In this regard, a new model based on the CNN is developed. The performance of this model is 

compared with that of a two-layer FFNN and a deep FFNN. The REB run-to-failure dataset used 

here is collected from a developed experimental setup at Sharif university of technology. In the 

developed model, no feature extraction step exists and the raw signals are fed to the models. The 

model is aimed to the detect existence of the impact pattern in the signal generated by faulty 

REBs. This novel approach introduced in this paper does not use the REBs fault frequencies. To 

increase the accuracy of the model, the datasets are normalized and used as the inputs of the 

model. Another advantage of the proposed method is that it does not use any preprocessing 

technique on the raw temporal signal. for training and testing, 8 run-to-failure test datasets are 

used that prevent the algorithms from overfitting on a single dataset. 

2. Representation of data and experimental setup 

2.1. Representation of developed experimental setup 

A set of accelerated-life tests on REBs was designed and performed in the condition monitoring 

lab of the Sharif University of Technology for this research. The test-rig is shown in figure 1. A 

test REB is mounted on the test-rig at one end of the shaft. Two larger REBs also support the 

shaft. The shaft is coupled to a 10 kW AC electromotor through the pulley and belt mechanism 

as the driver system. The pulley ratio is 1.9 which increases the output torque of the motor as 

well as reduces the speed. The test REB is a 6907 deep groove single-row REBs. The loading 

system pulls the housing of the test REB downward. Therefore, the loading zone is located at the 

top of the test REB. Experiments were conducted in constant operating conditions, including 

2000 rpm rotational speed and 9000 N radial load. On this platform, an accelerometer is installed 

vertically on the housing of the test REB (close to the load zone). The sampling frequency for the 

acceleration measurement is 25.6 kHz. The stopping criterion or failure threshold was defined on 

the amplitude of the acceleration signal. Therefore, touching the amplitude of 20g was the final 

failure criterion, and accelerated life tests were stopped at this point. 

 
Fig. 1. Test-rig of accelerated-life tests on REBs. 

Eight run-to-failure tests were conducted in the described test-rig, and corresponding vibration 

data were recorded. At the end of each test, the test REB was disassembled, and final failures 
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were recognized through visual inspection (figure 2). Table 1 reports the useful life of each test 

REB and the corresponding verified failure mode at the end of the tests.  

Table 1. Summary of accelerated life tests. 

Useful life (sec) Failure Mode Test No. 

13704 Rolling element 1 

9546 Rolling element 2 

10051 Rolling element 3 

14742 Inner race 4 

11670 Inner race 5 

26294 Inner race 6 

306610 Rolling element 7 

30205 Rolling element 8 

 

 
Fig. 2. Visual inspection results of failures in the elements of accelerated-life test REBs. 

2.2. Data representation 

The aim of this study is the classification of vibration signals corresponding to the defective 

REBs and the healthy REBs. Label 1 is selected for defective REBs and label 0 is selected for 

healthy ones. Two samples of defected REB vibration signal and healthy REB signal are 

depicted in figure 3. There are impact shapes in the defected REB signal that refer to fault 

existence. The impacts are resulting from the ball passing on defects or striking the ball defect to 

other REBs elements. The developing model in this study is aimed to detect this pattern.  
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(b) 

Fig. 3: (a) healthy REB signal example, (b) defective REB signal example 

To detect fault initiation in the test REB, the trend of the vibration signal root mean square 

(RMS) is used. The formula of RMS is represented by equation 1 [60]: 

  (1) 

where the N is the number of samples and Xz is the amplitude of a sample with index z.  Figure 4, 

represented the trend of signals RMS for all tests. Besides the trend study, all selected signals 

were investigated individually to ensure if the impact pattern exists in the faulty labeled signals. 

In some cases, the signal RMS has a considerable value but there is no impact pattern in the 

signal related to the REBs fault. These cases refer to other machine faults.  

 

Fig.4: The trend of RMS for all run-to-failure tests 
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A set of faulty signals (label=1) as well as a set of healthy condition signals (label=0) were 

selected randomly from eight run-to-failure tests depicted in figure 4. These temporal signals and 

labels are employed for training and testing the developed models. The inputs of all models are a 

matrix containing the normalized signals with a similar size and the outputs of all models are 1 

or 0 that are predefined before the training of the models. The RMS trend increase and the 

existence of impact pattern in the signal are two criteria for selecting the faulty signals in this 

study. The faults created in the REBs are due to spalling [61-63]. 

3. Development of the new fault detection model 

The developed algorithms are aimed to detect impact patterns in the raw vibration signals. The 

developed CNN-based model consists of four convolutional layers for effective feature 

extraction and three fully-connected (dense) layer for classification as shown in figure 6. For 

avoiding the overfitting in the CNN, the dropout process is used. To this aim, each convolution 

feature map activation is dropped out independently [64]. This process results in regularization 

and decreasing generalization errors in networks. To transfer the outputs of the network into 

probabilistic space, the softmax function is selected in the outputs of the fully-connected layer. 

Equation 2 represents the softmax activation function which computes the probability (𝑃(𝑥 )) of 

belonging a signal to a class. In this model, the convolutional layers extract the feature of the 

impact pattern efficiently. The leaky Rectified Linear Unit (Leaky ReLU) is used instead of 

simple ReLU. Because in some cases, there is no gradient flow in simple ReLU, and also the 

outputs of the simple ReLU in some cases are zero [65].  

 

 𝑃(𝑥 )   
𝑥 

∑     
   

  (     ) 

 

(2) 

 

where the 𝑥  is the input of a function with the defined index and 𝑃(𝑥 ) is the probability of 

belonging to a class with index i.  

 
 

Fig. 5: Leaky ReLU activation function [66] 

According to figure 5, the equation of leaky ReLU is represented in equation 3. 
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  (𝑥)  {
𝑥          𝑥   
 𝑥         𝑥   

 (3) 

 

where the parameter a is a trace number. However, the appearance of Leaky ReLU is alike to 

ReLU. In the convolutional process, the feature of the temporal signal is extracted by the kernel. 

The kernel is the matrix that moves on the signal such as a window with a certain stride. Every 

signal is filtered by some of the kernels in every convolutional layer. Through these processes, 

the features of the signal are extracted. After choosing the appropriate kernel and stride size, the 

network is ready for training. The max pooling operation is employed to select the maximum 

value from the feature map region covered by the filter.  

 

 
 

Fig 6: The developed CNN-based model for fault detection in REBs 

In this study, the results and accuracy of the CNN-based developed model, the two-layer FFNN, 

and the deep FFNN are compared (figure 7). The two-layer FFNN is mentioned as a shallow 

neural network. For better training of the networks, the data are normalized in [-1 1] intervals. In 

this case, the mean of the signal is changed. However, the schematics of signals are saved and 

the signal is mapped into a smaller space. In the FFNN, the sigmoid activation function (equation 

4) is used. No filters are exerted on signals. The aim is fault detection directly from the raw 

temporal signals using the AI method. The impact is going to be detected from the raw temporal 

signals. In this regard, the good capacity for noise removal of CNN is useful.  

        (  )       
 

      (   )
 (4) 

 

where the Oi is the ith output and the Ei is the linear activation of the ith neuron. The inputs of the 

FFNN models are the raw signal elements. In another word, the input of every neuron in the 
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input layer is a sample of the temporal signal. The feature extraction by this network is done by 

non-linear computation training. One of the innovations of this study is converting the high 

dimensional inputs to the low dimensional outputs (two classes including 0 and 1). It is worthy to 

emphasize that in actual industrial cases, the faulty REB should be replaced regardless to the 

type of fault location. The capability of the developed models in this study is detecting the fault 

existence and it is enough for industrial application. The important advantage of this approach is 

that there is no need to know the faulty REB code and its fault frequencies.  

 
 

  

Fig. 7: Two developed FFNNs for classification of the signal with impacts and the healthy signals 

(a) The two-layer (shallow) FFNN; (b) The deep FFNN model 

In equation 4, if the    has a large value, the    is equal to 1 for any type of input. This makes a 

great error in the classification. Therefore, the datasets should be normalized. Normalizing the 

dataset prevents the models to overfit a certain operating condition. Therefore, the models will 

not be sensitive to the amplitude of the signal.  

4. Results  

In this section, the results of implementing the developed algorithms for fault detection of REBs 

will be expressed and compared.   

1 for Defect 

0 for Healthy 

 

1 for Defect 

0 for Healthy 
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4.1. Implementing results of two-layer FFNN and deep FFNN  

The results of all developed models are totalized and presented after training and testing. The 

results of the two-layer FFNN are presented in table 2. In the second column, the number of 

neurons in the hidden layer is presented for several cases. Table 3 describes the results of deep 

FFNN for several cases. The number of neurons in the second layer to the penultimate layer is 

presented in the third column from left to right. In this study, the number of layers is referred to 

the addition of the hidden layers and the output layer.  

Table 2: The results of the two-layer FFNN for several cases of neurons in the hidden layer 

Implementing 

accuracy 

Number of neurons in 

hidden layers 
No. 

Implementing 

accuracy 

Number of neurons in 

hidden layers 
No. 

84.80 50 9 81.80 10 1 

81.40 55 10 83.00 15 2 

84.40 60 11 84.90 20 3 

82.20 65 12 84.40 25 4 

84.80 70 13 83.00 30 5 

81.30 75 14 82.70 35 6 

85.90 76 15 82.00 40 7 

85.20 80 16 81.60 45 8 

 

Table 3: The results of the deep FFNN for several cases of the hidden layer 

Implementing 

accuracy 

Number of 

neurons in 

networks 

Number 

of 

layers 

No. 
Implementing 

accuracy 

Number of 

neurons in 

networks 

Number 

of 

layers 

No. 

80.30 45-25-15-5 5 11 81.00 10-10 3 1 

80.10 10-10-10-10 5 12 81.80 15-15 3 2 

80.90 45-25-10-5 5 13 81.60 30-10 3 3 

80.70 55-25-18-10-5 6 14 82.10 60-10 3 4 

79.90 70-35-25-15-7 6 15 78.30 75-10 3 5 

79.10 70-25-18-10-5 6 16 80.60 15-15-15 4 6 

80.60 72-45-25-15-8 6 17 80.90 20-20-20 4 7 

76.70 80-35-25-15-7 6 18 81.00 75-15-4 4 8 

77.30 20-18-16-14-4 6 19 80.80 60-20-10 4 9 

78.70 20-18-16-14-6 6 20 80.10 55-25-12-6 5 10 
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According to tables 2 and 3, the accuracy of the two-layer FFNN and the deep FFNN for 

detection of the healthy or unhealthy are 85% and 82%, respectively. Figure 8 shows the 

confusion matrix for the best accuracy of the two-layer networks with 76 neurons in the hidden 

layer. According to this figure, the accuracy of validation is 74%. MATLAB is used for 

implementing the two-layer and the deep networks. 70% of the dataset is used for training, 15% 

for validation, and 15% for the test. Increasing the number of the hidden layers in the FFNN 

leads to the training of background noise of signal by networks instead of all prominent features 

in the time signal. Because in this case, the background noise of the signal is recognized by 

networks and this is not desired in this case.  

 
Fig. 8: The confusion matrix of the best accuracy of two-layer FFNN (item 15 in Table 2)  
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Fig. 9: The confusion matrix of the best accuracy of the deep FFNN (item 4 in Table 3) 

4.2. Implementing results of the developed model based on CNN.  

The CNN-based model and the FFNN models were implemented on the datasets and the results 

are presented. Python (programming) is used for implementing the developed CNN-based 

model. Figure 10, shows the confusion matrix for all datasets and changing accuracy in terms of 

training epochs. The results show that the accuracy of implementing the developed model is far 

greater than FFNN models. This is because of efficient feature extraction by the developed 

model. In this study, 75% of the datasets are used for training and the remaining are used for 

validation and test of the model. If there is enough dataset for training and testing, it is 

recommended to use 60 to 80 percent of the dataset for training, and the remaining for validation 

and testing [16, 67]. The variation of the loss function in terms of training epochs for the CCN-

based developed model is presented in figure 11.  

  
Fig. 10: Changing accuracy in terms of training epochs and confusion matrix for all datasets for the developed 

CNN-based model 
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Fig. 11: changing loss function in terms of training epochs for the developed CNN-based model 

Normally, the loss function of the validation data has a larger amount than the training data [15]. 

Also, this is shown in other research areas in the field of using CNN [68]. For the present study, 

the loss function of the validation data has a larger amount than the training data and this is 

shown in figure 11. That is because the validation data do not play role in tuning the weight 

parameters in the training process.   

4.3. Discussion and comparison of the developed models 

According to results obtained with all methods, the developed CNN-based model has better 

accuracy. This is because of the automatic and efficient feature extraction in this model. In 

addition, the two-layer networks have better accuracy than the deep FFNNs. Increasing the layer 

from the optimized number of layers leads to overfitting of training data and therefore the 

accuracy of the model is decreased. Increasing the layers leads to training of background noise of 

signal by networks. This matter leads to a decrease in accuracy in the validation datasets. 

Certainly, in this case, the complexity of networks is increased. The high accuracy of the CNN-

based model is referred to high resistance to overfitting and noise in the signals and sensitivity to 

the position of the impacts. High accuracy in test and validation datasets refers to this subject. 

The loss function in figure 11 indicates the correct training, test, and validation. In this study, the 

number of healthy REBs signals is more than defected REBs. The results indicate that the 

employed AI techniques for detection of impact patterns in the signal are useful. The dropout 

process in the CNN-based model is very effective and improves performance. With the 

normalization of data, the schematic of the signal and impacts in the signal were saved. Unlike 

deep FFNN, CNN is not sensitive to noise in the background of the signals. 

5. Conclusion  

In this study, a new method based on the CNN and two FFNN-based models were developed and 

the performance of the three models were studied and compared. The main capability of the 

developed models is detecting impact patterns (due to REBs defects) in the raw temporal signal. 
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The accuracy of methods is compared together. The accuracy of the developed CNN-based 

model in fault detection of the REBs was 98.6%. Whereas the accuracy of the two-layer FFNN is 

85% and that of the deep FFNN is 82%. High accuracy of the CNN-based model is referred to 

the efficient and automatic feature extraction and high resistance to overfitting and noise in the 

signals and sensitivity to the position of the impacts. It is obtained that the correct selection of 

model parameters affects the final accuracy.  

The prominent advantage of the developed models in this study is that they do not use the fault 

frequencies of the REBs. And, they only seek for impact patterns generated by local faults. Since 

in many industrial applications, detailed information about REBs is unknown to the condition 

monitoring team, the mentioned advantage is very helpful for automatic intelligent fault 

detection and interpretation of the signals.   
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