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Predicting the vibration behavior of microsystems is of great importance. In 

this study, the vibration behavior of a microsensor modeled as a two-layer 

microplate is investigated. The effect of size has been investigated through 

the modified couple stress theory. The first natural frequency is extracted 

using the penalty approach. Boundary conditions are modeled using linear or 

torsional springs. Finally, changes in the natural frequency of the 

microsystem are presented according to different values of the microplate 

parameters such as the thickness of the silicon layer and material of the 

second layer. The results show that the natural frequency decreases as the 

thickness of the second layer increases. In addition, despite the different first 

natural frequencies for different parameters, the natural frequency diagram 

shows the same behavior in terms of system parameters under various 

boundary conditions. Finally, the effect of the thicknesses ratio ℎ2/ℎ1  and 

material length scale parameters ratio 𝑙2/𝑙1 on the natural frequency is 

investigated.       
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1. Introduction 

Microelectromechanical systems (MEMS) have advanced greatly due to their small size, 

lightweight, high performance, easy mass production and low cost.  Microelectromechanical 

sensors are used to measure mechanical variables such as displacement, velocity, acceleration and 

force [1]. Microbeams and microplates are used in many MEMs sensors. Microsensors are widely 

used to measure some mechanical parameters and many of them consist of two major layers, 

piezoelectric and silicon. In many mems devices, the change of the special parameter is related to 

the change of the natural frequency. For example, in a microsensor for virus detection, when the 

viruses sit on the microsensor area, the natural frequency decreases. These devices can be modeled 

as a microplate or microbeam [2]. Many researchers have studied the dynamic characteristics of 

microstructures. Jomehzadeh et al. [3] analyzed microplate vibration using a new model based on 

the modified couple stress theory (MCST). The new model proposed in [3] can explain the effect 

of scale on microplate vibration. The equations of motion were obtained based on Kirschhoff's 

hypothesis using Hamilton's principle. Liao-Liang Ke et al.[4] developed a microplate-free 

vibration based on the Mindlin plate theory and the modified coupled stress theory. Hamilton's 

principle is used to derive the governing equation and boundary conditions in their paper. They 

used the p-version Ritz method to determine the natural frequency of the microplate with different 

boundary conditions. Ramezani [5] investigated the nonlinear vibration of the Kirchhoff a 

microplate based on strain gradient theory. In this model, the Von Carman strain tensor is used to 

include geometric nonlinear effects. The ordinary differential equation for the first mode of 

nonlinear vibration was used for a simple microplate using the Galerkin method. Ansari et al. [6] 

investigated the bending, buckling and free vibration behavior of the FG circular microplate based 

on the modified strain gradient elasticity theory and the Mindlin plate. In [6], the discretization of 

the governing differential equations with different boundary conditions is carried out with the 

generalized differential quadrature (GDQ) method. Şimşeket al.[7] studied the vibrations of a 

microplate with a moving load. They used the modified couple stress theory to investigate the 

vibrational behavior of the microplate. The dynamic response of the microplate has been 

investigated by considering the effects of the material length scale parameter on the plate 

dimensions, boundary conditions and moving load speed. The effect of dynamic deviations from 

the parameter of load size and speed is one of the results of his study. Mirsalehi et al.[8] studied 

the free vibrations of an FGM microplate based on strain gradient theory. The results of their study 

indicate that increasing the length scale parameter increases the critical buckling load and vibration 

frequency similar to the macroscopic model. Şimşek et al.[9] investigated the static bending and 

forced vibration of a functionally calibrated microplate under moving load using modified 

coupling stress theory. They used Lagrange equations to obtain microplane motion equations. The 

influence of the scale parameter and the moving load velocity on the dynamic response has been 

investigated. Omiddezyani et al. [10] studied the vibration of a rectangular microplate. One side 

of the microplate is coupled with an ideal fluid. MSCT was used in mathematical modeling of the 

problem. They used the Hamilton principle to derive equations and boundary conditions. The 

problem of the obtained eigenvalue related to the free vibration of a rectangular microplate with 

simple supported with fluid was solved analytically using the Rayleigh-Ritz method. Thai et al. 

[11] proposed a size-dependent computational model for the free vibration of multilayer 

functionally graded GPLRC microplates.  This model is based on a modified strain gradient theory 

and higher-order shear deformation theory. They used the principle of virtual work in deriving the 

equations. Zhou et al. [12] developed a circular microplane with surface effects and investigated 

https://link.springer.com/article/10.1007/s00707-015-1437-9#auth-M_-_im_ek
https://www.sciencedirect.com/science/article/abs/pii/S0997753816301863#!
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the effect of surface effects and residual stresses on dynamic properties. They derived the 

approximate results of their study using the Galerkin method. Thai et al.[13] examined the free 

vibration of the FG hexagonal beryllium crystal microplate. The natural frequency of the 

microplate was extracted based on the ISO geometric analysis (IGA). Their astrological results 

show that the frequency of the dependent model is larger than the frequency of the classical model. 

Mohammad-Rezaei Bidgoli and Arefi [14] studied the free vibration of composite microplate 

reinforced with functionally graded Nanoplatelets based on modified strain gradient theory. They 

calculated the size dependence in the governing equations with three parameters of the material 

length scale. The Hamilton principle is used to derive the equations. To validate their study, they 

reduced their relationships to the modified couple stress theory and the modified strain-gradient 

theory. Rahi [15] investigated a vibrational behavior of a two-layer micro sensor using the 

modified couple stress theory. He assumed the microsensor to be a microbeam. He used the 

Hamilton principle to derive the governing equations. The results of his research show that the 

first natural frequency of a microsensor decreases with increasing the scale parameter of 

dimensionless material or decreasing the thickness of silicon and piezoelectric. Rahi [16] 

investigated the dynamic response of multilayer microbeams. He derived the governing equations 

using Hamilton's principle and analytically extracted the natural frequencies of the system.  Ansari 

et.al [17] investigated Size-dependent nonlinear bending and post-buckling of functionally graded 

Mindlin rectangular microplates considering the physical neutral plane position. They used MCST, 

the power law function, and the Hamilton principle to derive the equations. The nonlinear bending 

and post-buckling responses of FG microplates were investigated by considering the effects of 

material gradient index, length scale parameter, length-to-thickness ratio and boundary conditions. 

Thanh et.al [18] studied size-dependent thermal bending and buckling composite laminate 

microplates. They used a new modified couple stress theory and isogeometric analysis to analyze 

the model. Ansari et.al [19] investigated the forced vibration of functionally graded non-classical 

microplates. The microplates are subjected to a transverse harmonic excitation force. They used 

the Hamilton principle to derive governing equations and the Galerkin method to convert them to 

a set of ordinary differential equations. The frequency response curve and effects of some 

parameters such as material types were obtained. Gholami et al. [20] investigated the nonlinear 

pull-in instability and vibrations of electrostatic actuators made of nanocrystalline materials under 

the influence of grain size and nanoscale effects. Governing equations are derived in the discretized 

weak form using the variational differential quadrature (VDQ) method based on the third-order 

shear deformation beam theory. The influences of various factors such as length scale parameter 

and density ratio on the pull-in instability and free vibration were investigated. Kumar et.al [21] 

analyzed thermoelastic damping for size-dependent microplate resonators. They used MCST and 

considered plane stress conditions and the three-phase-lag heat conduction model. The variations 

of thermoelastic damping as functions of the normalized frequency, microplate thickness, and 

length-scale parameter were investigated. 

In this paper, the vibrational behavior of a two-layer microsensor is investigated. For microsensor 

analysis, the system is modeled as a two-layer microplate and Non-classical Kirchhoff – Love 

plate theory is used. Modified couple stress theory is used to investigate the effect of the size effect 

parameter. Finally, natural frequencies are extracted using the Rayleigh-Ritz method for two 

different boundary conditions. For the first time, the governing equations of the two-layer 

microplate are derived using the penalty approach and the boundary conditions are modeled as 

linear or torsional springs. 
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2. Modeling and governing equations of the system 

The location of the neutral surface relative to the middle surface in FGM materials can be 

expressed as follows [9]: 

 

𝑒 =

∫ 𝐸(𝑧𝑚)𝑑𝑧𝑚

ℎ
2

−ℎ
2

∫ 𝐸𝑑𝑧𝑚

ℎ
2

−ℎ
2

 (1) 

The 𝑧𝑚 is the transverse coordinates defined with respect to the middle surface of the cantilever 

microplate.  Rahi uses Eq. 1 for a two-layer beam to express this distance as follows [15]: 

 𝑒 =
1

2

(𝐸2 − 𝐸1)(ℎ2
2 − ℎℎ2)

𝐸1ℎ + (𝐸2 − 𝐸1)ℎ2

 
(2) 

Where, 𝐸1 and 𝐸2 are the elastic modulus of the first and second layers, respectively. The strain 

energy of an isotropic linear elastic body can be calculated based on the modified couple stress 

theory in Eq. 3 [15]: 

 𝜋𝑠 =
1

2
∫(𝜎𝑖𝑗 𝜀𝑖𝑗 + 𝑚𝑖𝑗𝜒𝑖𝑗

𝑠 )dv  ;   i=x, y, z (3) 

Where 𝜋𝑠 is the strain energy, 𝜎𝑖𝑗 and 𝜀𝑖𝑗 show stress and strain tensors, respectively. The second 

term on the right-hand side of Eq. 3 (𝑚𝑖𝑗𝜒𝑖𝑗
𝑠 ) is related to the MSCT, in which 𝑚𝑖𝑗 shows the 

components of the deviatoric part of the couple stress tensor and the 𝜒𝑖𝑗
𝑠  components of the 

symmetric curvature tensor. For a two-layer plate, the appropriate form of Eq.3 is 

 

𝜋𝑠 =
1

2
∫ ∫ ∫ (𝜎𝑖𝑗𝜀𝑖𝑗 + 𝑚𝑖𝑗𝜒𝑖𝑗

𝑠 )𝑑𝑧𝑑𝑦𝑑𝑥

ℎ
2

−𝑒

ℎ
2

−𝑒−ℎ1

𝑏

0

𝑎

0

+ ∫ ∫ ∫ (𝜎𝑖𝑗𝜀𝑖𝑗 + 𝑚𝑖𝑗𝜒𝑖𝑗
𝑠 )𝑑𝑧𝑑𝑦𝑑𝑥 = ∫ ∫ [(𝑘1𝛼1

𝑏

0

𝑎

0

ℎ
2

−𝑒−ℎ1

−
ℎ
2

−𝑒

𝑏

0

𝑎

0

+ 𝑘2𝛼2

+
𝛽1+𝛽2

2
) [(

𝜕2𝑤0

𝜕𝑥2
)

2

+ (
𝜕2𝑤0

𝜕𝑦2
)

2

] + 2 (𝜈1𝑘1𝛼1 + 𝜈2𝑘2𝛼2 +
𝛽1+𝛽2

2
)

𝜕2𝑤0

𝜕𝑥2

𝜕2𝑤0

𝜕𝑦2

+ (
𝑘1𝛼1(1 − 𝜈1) + 𝑘2𝛼2(1 − 𝜈2)

2
+ 2(𝛽1 + 𝛽2)) (

𝜕2𝑤0

𝜕𝑥𝜕𝑦
)

2

]𝑑𝑦𝑑𝑥 

(4) 

The strain and stress tensors can be expressed as follows [15]: 

 𝜀𝑖𝑗 =
1

2
(𝑢𝑖,j + 𝑢𝑗,𝑖) (5) 

 {

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

} =
𝐸𝑛

1 − 𝜈𝑛

[

1 𝜈𝑛 0
𝜈𝑛 1 0

0 0
1 − 𝜈𝑛

2

] {

𝜀𝑥𝑥

𝜀𝑦𝑦

2𝜀𝑥𝑦

} (6) 

 𝜒𝑖𝑗 =
1

2
(𝜃𝑖,j + 𝜃𝑗,𝑖) (7) 
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 (𝑚𝑖𝑗)𝑛 =
𝐸𝑛

2𝐿2

1 − 𝜈𝑛

𝜒𝑖𝑗
𝑠  (8) 

In the above equations 𝜖𝑖𝑗𝑘 and 𝛿𝑖𝑗 denote the permutation tensor and Kronecker delta respectively. 

𝑢𝑖 is the component of the displacement vector.  L and 𝜈 are the material length scale parameter 

and Poisson's ratio respectively. 𝛽,  𝛼, 𝑘1  and 𝑘2 are defined as follows: 

 (𝛽)𝑛 =
𝐸𝑛

2

1−𝜈𝑛
  ,  (𝛼)𝑛 =

𝐸𝑛

1−𝜈𝑛
 

𝑘1 =
1

3
((

ℎ

2
− 𝑒)

3

− (
ℎ

2
− 𝑒 − ℎ1)

3

)  

𝑘2 =
1

3
[(

ℎ

2
− 𝑒 − ℎ1)

3

− (−
ℎ

2
− 𝑒)

3

] 

(9) 

The two-layer microplate with length a, width b, and thickness of h1 and h2 is shown in Figure 1. 

 

 

Fig. (1) Two-layer microplate 

According to Kirchhoff–Love microplate theory, displacement components can be written as 

follows [7]: 

 
𝑢𝑥(𝑥,𝑦,𝑧,𝑡) = −𝑧𝑛

𝜕𝑤0(𝑥,𝑦,𝑡)

𝜕𝑥
 

(10) 

 
𝑢𝑦(𝑥,𝑦,𝑧,𝑡) = −𝑧𝑛

𝜕𝑤0(𝑥,𝑦,𝑡)

𝜕𝑦
 

(11) 

 𝑢𝑧(𝑥,𝑦,𝑧,𝑡) = 𝑤0(𝑥,𝑦,𝑡) (12) 

Displacements in the directions of  X, Y, and Z are expressed by ux, uy and uz respectively. 𝑤0 

shows the transverse displacement and t denotes the time. The following strains are produced from 

the kinematic relations as follows:  
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 𝜀𝑥𝑥 = −𝑧𝑛

𝜕2𝑤0

𝜕𝑥2
 , 𝜀𝑦𝑦 = −𝑧𝑛

𝜕2𝑤0

𝜕𝑦2
, 𝜀𝑥𝑦 = −𝑧𝑛

𝜕2𝑤0

𝜕𝑥𝜕𝑦
 

(13) 

where 𝜀𝑥𝑥 and 𝜀𝑦𝑦 are the normal strain and 𝜀𝑥𝑦 is the shear strain. By placing Eq. 9 and 10 in Eq. 

6, the rotation components are calculated as follows: 

 𝜃𝑥 = −𝑧𝑛

𝜕𝑤0

𝜕𝑦
, 𝜃𝑦 = −𝑧𝑛

𝜕𝑤0

𝜕𝑥
, 𝜃𝑧 = 0 

(14) 

Placing Eq. 13 in Eq. 6 results in determining the non-zero components of curvature as follows: 

 𝜒𝑥𝑥 =
𝜕2𝑤0

𝜕𝑥𝜕𝑦
 ,  𝜒𝑦𝑦 = −

𝜕2𝑤0

𝜕𝑥𝜕𝑦
,  𝜒𝑥𝑦 =

1

2
(

𝜕2𝑤0

𝜕𝑦2
−

𝜕2𝑤0

𝜕𝑥2
) 

𝜒𝑥𝑧 = 𝜒𝑦𝑧 = 𝜒𝑧𝑧 = 0 

(15) 

The kinetic energy of the system is expressed as follows: 

 𝑇 =
1

2
∫ ∫ (𝜌1ℎ1 + 𝜌2ℎ2)

𝑏

0

𝑎

0

(
𝜕𝑤0

𝜕𝑡
)2𝑑𝑦𝑑𝑥 (16) 

3. Penalty approach 

The penalty approach is used to obtain the natural frequency of the microplate. This method can 

be used to solve any equation regardless of boundary conditions. In the first step, it is assumed that 

there is no limitation for boundaries and the plate is on the FFFF condition (all edges are free). 

Three admissible functions are considered for each direction. These functions can model the 

displacement of the plate [22]. They are defined as: 

 
𝜑𝑖(𝑥) = 1𝑓𝑜𝑟𝑖 = 1  ;      𝜓𝑖(𝑦) = 1𝑓𝑜𝑟𝑖 = 1     

 𝜑𝑖(𝑥) = (
𝑥

𝐿
) 𝑓𝑜𝑟𝑖 = 2  ;   𝜓𝑖(𝑦) = (

𝑦

𝐿
) 𝑓𝑜𝑟 𝑖 = 2 

 𝜑𝑖(𝑥) = (
𝑥

𝐿
)2  𝑓𝑜𝑟 𝑖 = 3  ;   𝜓𝑖(𝑦) = (

𝑦

𝐿
)2  𝑓𝑜𝑟 𝑖 = 3 

(17) 

In this method, boundary conditions are modeled by linear and torsional springs with high stiffness 

to express displacement and rotational limitations respectively. Based on Rayleigh-Ritz method, 

these springs change the potential energy, the stiffness matrix and thus the system’s natural 

frequency. In this article, linear and torsional springs are called kl and kt. The potential energy of 

springs is defined as: 

 𝜋𝑘𝑙
=

1

2
𝑤(𝑥,𝑦)2 

𝜋𝑘𝑡
=

1

2
 (

𝜕𝑤

𝜕𝑅
)

2

  𝑅 = 𝑥 , 𝑦 

(18) 

The value of kl and kt  are 10𝑝. Also, 𝑝  is a positive integer. The value of 𝑝 starting from 1 is 

increased by 1 unit in each step until the results converge. Figure 2 shows a convergence in natural 

frequency of a two-layers SSSS microplate with these characteristics: 
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Table 1. Characteristics of instance microplate 

Layer number material E(GPa) 𝜈 𝜌(Kg/m3) h(μm) a(μm) b(μm) 

1 Si 170 0.22 2233 8 600 600 

2 PZT 63 0.32 7750 8 600 600 

 

Based on the Rayleigh-Ritz method, natural frequencies are calculated as: 

 
(𝜋𝑡)𝑚𝑎𝑥 = (𝜔𝑇∗)𝑚𝑎𝑥 (19) 

Where 

 
𝜋𝑡 = 𝜋𝑠 + 𝜋𝑘𝑙

+ 𝜋𝑘𝑡
 

𝜔𝑇∗ = 𝑇 
(20) 

 

Fig. (2) Results from the convergence table for instance microplate  

4. Results and discussion 

In this section, the effect of two parameters, 2nd layer thickness and 2nd layer material, for a two-

layer microsensor whose layer specifications are described in Tables 3 and 4 is examined. To 

investigate the two parameters expressed, the MATLAB code of the Rayleigh-Ritz method is 

written under two common boundary conditions in microsensors, which are CFCF (2 edges are 

free and 2 edges are clamped) and the second one is CFFF (1 edge is clamped and others are free). 
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Table 3. Characteristics of layers 
material E(GPa) 𝝂 𝝆(Kg/m3) 

1st layer-silicon 170 0.22 2233 

2nd layer PZT 63 0.32 7750 

 

Figures 3 and 4 show the variation of the first natural frequency with the (a/ℎ) ratio, where a=b, 

for three different values of the thickness ratio (
ℎ2

ℎ1
⁄ ). Results show that when (a/ℎ) increases, 

the natural frequency of the microplate decreases for both cases. Also in the high (a/ℎ) ratio, the 

effect of the thickness ratio on the natural frequency, compared to low ratios, decreases. As can be 

seen, the frequency change does not depend on the boundary conditions. 

  

Fig. (3) Natural frequencies of CFFF microplate Fig. (4) Natural frequencies of CFCF microplate 

The effect of the 2nd layer’s material is investigated and the results are illustrated in Figures 5 and 

6 for CFFF and CFCF cases respectively. As can be seen, the natural frequency decreases as the 

thickness of the second layer increases. The results also show that the natural frequency decreases 

with decreasing modulus of elasticity and has almost the same behavior in different materials. 

Table 4. Characteristics of the second layer  

Material E (GPa) 𝝂 𝝆 (Kg/m3) 

AlN 308.3 0.179 3260 

ZnO 112.2 0.336 5530 

PZT 63 0.32 7750 
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Fig. (5) Natural frequencies of CFFF microplate 

with a different second layer 

Fig. (6) Natural frequencies of CFCF microplate with 

a different second layer 

In the last section of this study, the effects of material length scale parameters ratio (MLSPR) are 

investigated. Figure 7 shows the changes in the natural frequency based on the various MLSPR 

for plates with different dimensions and boundary conditions. The natural frequency of the 

microplate increases when the MLSPR increases. This increase is high as the thickness of the 

plates decreases. Also, there is the same behavior in two types of boundary conditions. 

 

Fig. (7) Natural frequencies of CFFF and CFCF microplate with a different MLSPR 

5. Results verification  

In this section, the results of this study are compared with the Ritz method [23]. For simplification, 

the effects of the second layer are ignored and the system is modeled as a one-layer CFCF 

microplate. Also, the material length scale parameter is assumed 0. Figure 8 illustrates the natural 

frequency according to the width-to-thickness ratio. The difference between results based on the 
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two methods is large when the width of the plate is small. However, the discrepancy is decreased 

as the width increases. This method seems to give better answers for larger plates. 

 

Fig. (8) Comparing the results of the present method with the results of the Ritz method for a CFCF plate 

6. Conclusion  

In this paper, the dynamic behavior of a microsensor, modeled as a two-layer microplate, was 

investigated with an analytical approach. Modified Couple Stress Theory (MCST) is used to record 

the effect of material size on the extraction of governing equations and natural frequency in this 

paper. Also, the first natural frequency of the system is extracted using the Rayleigh-Ritz method. 

The Rayleigh-Ritz method uses a penalty approach for the first time and the fixed boundaries of 

microplate or simply supported boundaries are modeled as springs. The reason for using the 

penalty approach is the use of this method in different boundary conditions. The natural frequency 

of the system is extracted at different thicknesses of the silicon layer as well as for different 

materials of the second layer. 

The first natural frequency of the system is extracted according to different system parameters. 

The results show that the natural frequency decreases when the thickness of the second layer 

increases for different (a/ℎ) ratios. Also, despite the different first natural frequencies in different 

parameters, the natural frequency diagram shows the same behavior in terms of system parameters 

in different boundary conditions. 

Based on the penalty approach, the increase of the material length scale parameter can increase the 

natural frequency and the boundary conditions do not have a significant effect on this increase. 

This increase is larger when the width of the square plate is small. Also, it can be inferred from 

the results and verification that by using this method the results agree with the results of the 

previous studies as the width of the microplate increases. 
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