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In the present study, the free vibration and aeroelastic problems of 

rectangular cantilever plates with varying aspect ratio have been 

investigated. The classical plate theories based on the Kirchhoff hypothesis 

have been adopted to simulate the structural response of the plate. The 

Peter’s theory is selected to model the aerodynamic pressure on the plate due 

to the incompressible air flow. To discretize the partial deferential equations 

of the system, the Rayleigh-Ritz method has been applied and by using 

Lagrange equations, the mass, damping, and stiffness matrices have been 

derived. Various numbers of mode shapes are used to show the convergence 

of the response of the system . The theoretical results including the natural 

frequencies and flutter speed have been evaluated by using the experimental 

data obtained from the ground vibration experiment carried out at Duke 

University. It has been shown that for a relatively low aspect ratio 

rectangular cantilever plate, using some techniques in Rayleigh–Ritz method 

leads to an improvement of the results for both the natural frequencies and 

flutter speed. This technique ends up having two sets of decoupled equations 

and consequently, the number of equations that have to be solved 

simultaneously is divided by two. This could lead to a reduction of 

computational time significantly. 
© 2020 Iranian Society of Acoustics and Vibration, All rights reserved. 
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1. Introduction 

In the design of aerospace structures, a rectangular cantilever plate is frequently used as a simple 

model to capture the structural response of different parts. Thus, the free vibration and 
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aeroelastic analyses of thin rectangular cantilever plates is a subject that has received the 

attention of numerous researchers throughout the past century.  

Among different theories, the Euler–Bernoulli beam theory and the classical plate theory have 

been applied more than others. For high aspect ratios (AR>10) rectangular plates, the beam 

theory is the first choice in analyses. While, for low aspect ratio rectangular plates, the classic 

plate theory has been mainly selected by investigators to model the structural response of the 

system.  

In the Euler–Bernoulli beam theory, a closed-form solution of the partial differential equations 

governing the free vibrations is possible. In contrast, there is no exact closed-form solution for 

the problems concerning the free vibrations of rectangular cantilever plates with the use of the 

classical plate theory. The absence of such exact solutions necessitates the investigation for 

approximate solutions. The solution methods for these problems include analytical, semi-

analytical-numerical, and numerical methods. In this regard, this work presents only an overview 

of the use of different solution methods in the study of the free vibrations of plates. 

For the solution of free vibration, static, and buckling problems of rectangular cantilever plates, 

the Rayleigh, the Rayleigh-Ritz, and the Kantorovich methods have been primarily used for 

several decades in comparison to other analytical and numerical methods. The most significant 

study in the classical literature (up to 1990) on plate vibration and solution methods is the 

masterful book by Leissa1[1].  

During the last two decades, researchers have mostly concentrated on more complicated 

problems in the analysis of plates such as taking composite material and orthotropic behaviour 

into accounting in addition to considering shear deformable theories for thick plates or 

nonhomogeneous boundary conditions. In this study, however, we have mainly concentrated on 

those studies investigating the free vibration analysis of an isotropic thin rectangular cantilever 

plate. 

Shen et.al (2003) conducted an analytical study to determine the characteristics associated with 

the vibrations of a strengthened plate with various boundary conditions. They used a set of beam 

Eigen functions, which satisfies geometric boundary conditions. They also adopted the Rayleigh-

Ritz method with the set of admissible functions to calculate the deflections, stresses, and natural 

frequencies of the plate [2] Seok et.al (2004) studied the free vibrations of rectangular cantilever 

plates considering only the out of plane motion using a variational approximation procedure. 

They demonstrated that the results are compatible with those obtained from FEM, and therefore, 

show the accuracy of this procedure [3]. Next, they did a similar study considering only the in-

plane motion[4] Wang and Xu (2010) analyzed the free vibration of annular plates, rectangular 

plates, and beams, under free boundary conditions with the use of the discrete singular 

convolution. They introduced a novel method applicable to the free boundary conditions. They 

proved that this method is simple to use and can lead to accurate theoretical frequency obtained 

for plates with free edges and beams with a free end [5].. Next, using the discrete singular 

convolution (DSC) algorithm, they investigated the free vibration analysis of thin anisotropic and 

isotropic rectangular plates under various boundary conditions[6]. Based on Taylor’s series 

expansion, they proposed a unique scheme to apply for various boundary conditions. 

Carrera et.al (2011) studied the vibration of anisotropic plates under simply supported boundary 

conditions by using Rayleigh-Ritz and variable kinematic method. They used a collection of 
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trigonometric functions and to demonstrate the accuracy of the results, convergence studies were 

made. They discussed the effects of the various factors including fiber orientation material, and 

the number of layers on the frequencies and mode shapes [7]. Eftekhari and Jafari (2012) 

combined the Ritz and differential quadrature (DQ) methods for the problem associated with the 

vibrations of the rectangular plate. As a result of this combination, they utilized both the 

simplicity of the Ritz method and the efficiency and high accuracy of the DQ method[8].  

Eftekhari (2018) studied the free vibrations of both thick and thin rectangular plates under 

various boundary conditions using the coupled Ritz-finite element method [9]. Liu and Banerjee 

(2016) investigated the free vibrations of plates with arbitrary boundary conditions including 

rectangular cantilever plates using a novel spectral-dynamic stiffness method. The formulation, 

in a series sense, satisfies various boundary conditions, in addition to satisfying the governing 

differential equation exactly. Rui et.al (2018), using the rational superposition method in the 

symplectic space, obtained accurate analytical solutions applicable to the free vibration of 

rectangular cantilever plates. First, they constructed the Hamiltonian system-based governing 

equation. They demonstrated that the developed method leads to benchmark analytic solutions 

with satisfactory accuracy and fast convergence without assuming any trial solutions[10]. Xing 

et.al (2018), based on the Rayleigh quotient variational principle, developed a separation-of-

variable method applicable to the free vibration analysis of rectangular thin plates. They 

developed an iterative separation-of-variable method which can be used for thin rectangular 

plates under various homogeneous boundary conditions. All closed-form solutions are presented 

in explicit forms, and using theoretical and numerical comparisons, validated the proposed 

methods and results [11]. Eisenberger and Deutsch studied the solution of a problem associated 

with the free vibrations of a thin rectangular plate with all combinations of boundary conditions 

including cantilever plates. They selected series that for various combinations of edge conditions, 

solve the partial differential equations of motion [12]. 

So far, only those studies related to the free vibrations of a low aspect ratio rectangular plate 

using the classical plate theory were mentioned. For the aeroelastic analysis of a rectangular 

cantilever plate, the beam theory is usually selected as the structural model [13-20]. The plate 

theories have been rarely used to model the structural response. As the flow is oriented along the 

wing’s span direction the problem is called Flag-like configuration [21-24]. As the flow is 

oriented along the wing’s chord direction the problem is called Wing-like configuration [25-27]. 

From the available vast literature for the free and forced vibrations of high and low aspect ratios 

of rectangular cantilever plates, one can see that the Rayleigh-Ritz method has been mainly 

applied, with the use of natural beam bending mode shapes. By considering the simplicity, the 

generality, and having less constraint in comparison with other solution techniques, the 

Rayleigh-Ritz method is preferred by many investigators.  

In the present study, we will show how using some techniques in the Rayleigh-Ritz method leads 

to an improvement of the results and reduction of computational time significantly for the free 

vibration and consequently the aeroelastic analyses of a rectangular cantilever plate. For the 

structural and aeroelastic analyses in this study, the plate theory based on Kirchhoff hypothesis 

has been selected as the structural model. The Peter’s theory is selected to model the 

aerodynamic loads on the plate due to the incompressible air flow. Using the Rayleigh-Ritz 

method the partial defferential equations are discretized. Various numbers of mode shapes have 
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been tried to prove the convergence of the results and the small perturbation flutter boundary is 

determined. The experimental data have been used to evaluate the theoretical results.  

2. Mathematical model 

2.1. Structural model 

Various models have been adopted as a mathematical model to study the structural response of 

the rectangular plates. For a low aspect ratio, a thin plate classical plate theory is the first choice 

adopted by the researchers as the structural model. Fig. 1 presents a rectangular cantilever plate 

from the top view. 

 

Fig 1: rectangular cantilever plate from the top view  

According to the Kirchhoff hypothesis (1850), we assume that, before and after deformation, the 

cross-sections remain perpendicular to the mid–plane, without any kinds of warpings. Therefore, 

the shear deformation has been ignored. 

As it can be seen in Fig. 1, a rectangular cantilever plate has been selected as the case study here. 

For an arbitrary point located on the plate element, the small displacements 𝑢𝑖 are:  

 𝑢1 = 𝑈 − 𝑧
𝜕𝑊

𝜕𝑥
,              𝑢2 = 𝑉 − 𝑧

𝜕𝑊

𝜕𝑦
,            𝑢3 = 𝑊 (1) 

 

where 𝑢1, 𝑢2, and 𝑢3 are measured with respect to the 𝑥𝑦𝑧 coordinate system and they are the 

displacement components of any point along 𝑥, 𝑦, and 𝑧 axes, respectively. Also, 𝑈, 𝑉, and 𝑊 

which are measured with respect to the 𝑥𝑦𝑧 coordinate system are the displacement components 

of the desired point on mid–plane. We noted that 𝑈, 𝑉, and 𝑊 are independent of 𝑧. 

By ignoring the in-plane motion 𝑈 = 𝑉 = 0 

 
𝑢1 = −𝑧

𝜕𝑊(𝑥, 𝑦, 𝑡)

𝜕𝑥
,              𝑢2 = −𝑧

𝜕𝑊(𝑥, 𝑦, 𝑡)

𝜕𝑦
,            𝑢3 = 𝑊(𝑥, 𝑦, 𝑡) (2) 

 

The total strain energy is 
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 𝑈 =
1

2
∫(𝜎11𝜖11 + 𝜎22𝜖22 + 𝜎12𝜖12)𝑑𝑉 (3) 

 

Using strain-displacements and stress-strain relationships Eq. (3) is written in the following form 

 𝑈 =
1

2
∫ (

𝐸

1 − 𝜈2
(−𝑧𝑊𝑥𝑥 − 𝑧𝜈𝑊𝑦𝑦)

2
+ (

𝐸

1 − 𝜈2
) (

1 − 𝜈

2
) (−𝑧𝜈𝑊𝑥𝑥 − 𝑧𝑊𝑦𝑦)

2

+ (
𝐸

1 − 𝜈2
) (

1 − 𝜈

2
) (−2𝑧𝑊𝑥𝑦)

2
) 𝑑𝑉 

(4) 

 

By integrating with respect to 𝑧, one can write 

 𝑈 =
𝐷

2
∫ ∫(𝑊𝑥𝑥

2 + 𝑊𝑦𝑦
2 + 2𝜈𝑊𝑥𝑥𝑊𝑦𝑦 + 2(1 − 𝜈)𝑊𝑥𝑦

2)𝑑𝐴 (5) 

 

in which  

 
𝐷 =

𝐸ℎ3

12(1 − 𝜈2)
 (6) 

 

The following expression of the potential energy for the classical plate theory is more common 

in the literature 

 
𝑈 =

𝐷

2
∫ ∫ ((

𝜕2𝑊

𝜕2𝑥
+

𝜕2𝑊

𝜕2𝑦
)

2

− 2(1 − 𝜈) (
𝜕2𝑊

𝜕2𝑥

𝜕2𝑊

𝜕2𝑦
− (

𝜕2𝑊

𝜕𝑥𝜕𝑦
)

2

)) 𝑑𝐴 (7) 

 

For the classical plate theory, the kinetic energy is: 

 
𝑇 =

1

2
∫ ∫ 𝜌ℎ (

𝜕𝑊

𝜕𝑡
)

2

𝑑𝐴 (8) 

 

where h is the thickness of the palate. In the Rayleigh-Ritz method, 𝑊 is approximated by the 

series as follows 

 
𝑊(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝜙𝑖(𝑦)𝜓𝑗(𝑥)𝑞𝑖𝑗(𝑡)

𝑁

𝑗=1

𝑀

𝑖=1

 (9) 

 

The best choice of 𝜙𝑖 and 𝜓𝑗 could be made by using the mode functions of a free-free beam and 

cantilever beam as the admissible functions in the x and y directions of the cantilever plate, 

respectively. 𝑀 and 𝑁 are the number of the admissible functions in the y and x directions, 

respectively.  We noted that for the x direction, two different trial functions have been 

considered in this study. First, the trial functions for a free-free beam which has been proposed 

and employed in [28] are considered. Second, a kind of polynomials is selected as the mode 

functions. We noted that the second type of mode functions has an important property and they 
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are compatible with the Peter’s aerodynamic model. So, for the aeroelastic model, the second 

type has to be selected as the mode functions. The polynomials, 𝜁𝑗(𝑥), are defined as follows[29]  

 𝜁𝑗(𝑥) = cos((𝑗 − 1)𝜆)      𝑎𝑛𝑑    cos(𝜆) =
𝑥

𝑏
 (10) 

 

So, it can be written 

 𝜁1 = 1, 𝜁2 =
𝑥

𝑏
, 𝜁3 = 2 (

𝑥

𝑏
)

2

− 1 

(11) 
 𝜁4 = −3 (

𝑥

𝑏
) + 4 (

𝑥

𝑏
)

3

,             … 

 

Lagrange’s equations for free vibrations are 

 𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑖𝑗
) −

𝜕𝐿

𝜕𝑞𝑖𝑗
+ 𝑄𝑖𝑗 = 0 (12) 

 

where   

 𝐿 = 𝑇 − 𝑈, 𝑄𝑖𝑗 = ∬ 𝑝(𝑥, 𝑦, 𝑡)
𝜕𝑤

𝜕𝑞𝑖𝑗
 𝑑𝑥𝑑𝑦 (13) 

 

We noted that for the free vibrations, 𝑄𝑖𝑗 = 0. Substituting Eq. (7) and Eq. (8) into Eq. (12) and 

Eq. (13), the final governing equations in matrix form to determine 𝑞𝑖𝑗(𝑡) can be written as  

 [𝑀]{𝑞̈𝑖𝑗} + [𝐾]{𝑞𝑖𝑗} = 0 
(14) 

 

2.2.Aerodynamic model 

The Peters’ model is selected to simulate the aerodynamic pressure on the case study considered 

here. We noted that the Peters’ model provides moment and lift for each cross-section and 

therefore, can be only coupled with beam equations. So, to determine the pressure of the air flow 

on the plate, it is needed to make this aerodynamic model applicable to be combined with the 

plate theory. In the present study, Fourier transform has been employed to make Peters’ model 

compatible with the classical plate theory.  

Peters et.al introduces the generalized forces as follows [29] 

 
𝐿𝑛(𝑥, 𝑡) = − ∫ Δ𝑃(𝑥, 𝑦, 𝑡)𝑐𝑜𝑠(𝑛𝜑)𝑑𝑦

+𝑏

−𝑏

= − ∫ 𝑏Δ𝑃(𝑥, 𝑦, 𝑡)𝑐𝑜𝑠(𝑛𝜑) sin 𝜑 𝑑𝜑
𝜋

0

 (15) 

 

in which, Δ𝑝 is the pressure of the air flow on an arbitrary cross-section, and 𝑛 = 0, 1, 2, …,  

 𝑦 = 𝑏𝑐𝑜𝑠(𝜑) 
(16) 
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𝐿𝑛(𝑥, 𝑡) can be written as follows: 

 
𝐿𝑛 = − ∫ 𝑓(𝜑)𝑐𝑜𝑠(𝑛𝜑)𝑑𝜑

𝜋

0

 (17) 

 

in which 

 𝑓(𝜑) = 𝑏Δ𝑃 sin 𝜑 
(18) 

 

By using the Fourier cosine series: 

 
𝑓(𝜙) = 𝑎0 + ∑ 𝑎𝑛 cos

𝑛𝜋𝜑

𝐿

∞

𝑛=1

 (19) 

 

We put 𝐿 = 𝜋. So we have 

 
𝑓(𝜙) = 𝑎0 + ∑ 𝑎𝑛 cos 𝑛𝜑

∞

𝑛=1

 (20) 

 

in which 

 
𝑎0 =

1

𝜋
∫ 𝑓(𝜑)𝑑𝜑

𝜋

0

   𝑎𝑛𝑑    𝑎𝑛 =
2

𝜋
∫ 𝑓(𝜑)𝑐𝑜𝑠(𝑛𝜑)𝑑𝜑

𝜋

0

 , 𝑛 = 1, 2, 3, … (21) 

 

From Eqs. (17) and (21), we can write: 

 𝑎0 = −
𝐿0

𝜋
           𝑎𝑛𝑑             𝑎𝑛 = −

2𝐿𝑛

𝜋
 (22) 

 

Therefore 

 𝑓(𝜑) = 𝑏Δ𝑃 sin 𝜑 = −
𝐿0

𝜋
−

2𝐿1

𝜋
cos 𝜑 −

2𝐿2

𝜋
cos 2𝜑 + ⋯ (23) 

 

Finally, the pressure distribution is written as follows: 

 𝑝(𝑥, 𝑦, 𝑡) = Δ𝑃 = −
𝐿0(𝑥, 𝑡)

𝜋𝑏 sin 𝜑
−

2𝐿1(𝑥, 𝑡)

𝜋𝑏 sin 𝜑
cos 𝜑 −

2𝐿2(𝑥, 𝑡)

𝜋𝑏 sin 𝜑
cos 2𝜑 −

2𝐿3(𝑥, 𝑡)

𝜋𝑏 sin 𝜙
cos 3𝜙 + ⋯ (24) 

 

In Eq (24), 𝐿0, 𝐿1, 𝐿2, etc. can be written by using lateral displacement of the plate in 𝑧 direction. 

Therefore, ΔP can be approximated using an arbitrary number of 𝐿𝑛. We noted that in the 

Rayleigh-Ritz method, the number of mode functions in the y direction should be equal to the 

number of 𝐿𝑛. For instance, if 𝐿0, 𝐿1, and 𝐿2 are considered in the Δ𝑃, the functions 𝜁1 = 1, 

𝜁2 =
𝑥

𝑏
, and 𝜁3 = 2 (

𝑥

𝑏
)

2
− 1 have to be selected in the Rayleigh-Ritz method. So, 𝛥𝑃 can be 

approximated using an arbitrary number of 𝐿𝑛.  
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2.3.Aeroelastic Model 

Using the Eqs. (24) and Eq. (13), we can determine 𝑄𝑖𝑗 in its’ final form. Also, by using Eqs (7), 

(8), and (13), the final forms of 
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑖𝑗
) and 

𝜕𝐿

𝜕𝑞𝑖𝑗
 can be expressed. Finally, the terms 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑞̇𝑖𝑗
), 

𝜕𝐿

𝜕𝑞𝑖𝑗
, and 𝑄𝑖𝑗 are replaced into Eq. (12), and therefore, the final matrix form equations governing 

the aeroelastic system is derived. Using a simple series of mathematical operations, The final 

matrix form of equations is written as follows 

 [𝐀]{𝑥}̇ + [𝐁]{𝑥} = 0 
(25) 

 

which is applicable for the eigenvalue problem and consequently performing the flutter analysis. 

We noted  {𝑥},   in Eq (25) are the time-dependent state variables of the aeroelastic system.  

3. Results 

In the present study, we divided the results section into two main parts. First, the results of the 

free vibration analysis have been presented. A cantilever plate with variable width is considered 

here as a case study. First, the convergence test using a different number of mode shapes in each 

direction has been done. Next, the theoretical results have been compared with published as well 

as previously unpublished data obtained from an experiment carried out at Duke University. 

After the presentation of the results obtained from the structural analysis, the results associated 

with the aeroelastic analysis of a rectangular cantilever plate will be presented. The experimental 

data published in [25] as well as previously unpublished data have been used to evaluate the 

theoretical results. It has been shown that using some techniques in the Rayleigh-Ritz method 

can lead to an improvement of both free vibrations and aeroelastic results.  An aluminium alloy 

plate is selected as the case study which Table 1 shows its’ parameters.  

Table 1. Properties of the plate  

Length 275 mm 

Width 151, 108, 55 mm 

Thickness 0.381 mm 

Density 2840 kg/m3 

Young’s modulus 72 GPa 

Poisson’s ratio 0.3 

3.1.The free vibrations analysis 

3.1.1Convergence test 

Table 2 presents the convergence test for the 275 mm × 151 mm rectangular cantilever plate 

using beam characteristic functions in both x and y directions. In other words, mode shapes for a 

free–free beam and cantilever beam are adopted as the mode functions in the x and y directions, 

respectively. The theoretical natural frequencies are determined by solving Eq. (25), ignoring the 

aerodynamic forces.   
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Table 2. Convergence test for 275 mm × 151 mm rectangular plate using mode functions for cantilever beam and 

free–free beam as the admissible functions in the y and x directions, respectively 

Frequency (Hz) 
𝑴 × 𝑵 

𝟑 × 𝟏 𝟒 × 𝟏 𝟓 × 𝟏 𝟓 × 𝟐 𝟓 × 𝟑 𝟓 × 𝟒 𝟓 × 𝟓 

First Bending 4.2536 4.2536 4.2536 4.2536 4.2536 4.2536 4.2536 

First Torsion - - - 16.6120 16.6120 16.5928 16.5928 

Second Bending 26.6572 26.6572 26.6572 26.6572 26.6572 26.6572 26.6572 

Second Torsion - - - 55.1597 55.1597 54.8352 54.8352 

Third Bending 74.6409 74.6409 74.6409 74.6409 74.6409 74.6409 74.6409 

 

From Table 2, we can see that the torsional frequencies change only when 𝑁 increases from an 

odd number to an even number. It means that when we increase the number of admissible 

functions in x direction from an even number such as 2 to an odd number, such as 3, the torsional 

frequencies remained unchanged. For more investigation, we try another kind of admissible 

function in x direction. 

Table 3 indicates the convergence test for the 275 mm × 151 mm rectangular cantilever plate 

using mode functions for a cantilever beam in the y direction and polynomials defined earlier in 

the x direction. 𝑁 is the number of admissible functions in the x direction and similarly, 𝑀 is the 

number of structural mode shapes in the y direction.  

Table 3. Convergence test for 275 mm × 151 mm rectangular plate using mode functions for a cantilever beam in the 

y direction and polynomials in chord-direction 

Frequency (Hz) 
𝑴 × 𝑵 

𝟑 × 𝟏 𝟒 × 𝟏 𝟓 × 𝟏 𝟓 × 𝟐 𝟓 × 𝟑 𝟓 × 𝟒 𝟓 × 𝟓 

First Bending 4.2956 4.2956 4.2956 4.2956 4.2956 4.2956 4.2956 

First Torsion - - - 16.7767 16.7767 16.7814 16.7814 

Second Bending 26.9202 26.9202 26.9202 26.9202 26.9202 26.9202 26.9202 

Second Torsion - - - 55.7200 55.7200 55.7054 55.7054 

Third Bending 75.3773 75.3773 75.3773 75.3773 75.3773 75.3773 75.3773 

 

From the tables above, it can be seen that considering two and three mode shapes in the x and y 

directions, respectively, (𝑁 = 2 and 𝑀 = 3) is sufficiently well to capture the first five natural 

frequencies of a rectangular plate with an aspect ratio above 
275

151
≈ 1.8.   

From both tables 2 and 3, we can see that the torsional frequencies change only when 𝑁 

increases from 3 to 4. In other words, the torsional frequencies change only when 𝑁 increases 

from an odd number to an even number. It means that when N is increased, for example, from 2 

to 3, no anti-symmetric mode function is added to the Eq. (9). So, it can be concluded that the 
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symmetric and anti-symmetric mode functions in the x direction are completely decoupled from 

each other. This finding enables us to use different kinds of admissible functions in the y 

direction for symmetric and anti-symmetric mode functions. In this regard, we consider the 

bending modes of a uniform cantilever beam as an admissible function for the symmetric mode 

of the cantilever plate and the torsional modes of a uniform cantilever beam as an admissible 

function for the anti-symmetric mode of the cantilever plate, both in the y direction. To express 

this technique clearly, first, we rewrite Eq.9 in the following form: 

 
𝑤(𝑥, 𝑦, 𝑡) = ∑ 𝜙𝑖(𝑦)𝜓1(𝑥)𝑞𝑖1(𝑡)

𝑀

𝑖=1

+ ∑ 𝜙𝑖(𝑦)𝜓2(𝑥)𝑞𝑖2(𝑡)

𝑀

𝑖=1

+ ∑ 𝜙𝑖(𝑦)𝜓3(𝑥)𝑞𝑖3(𝑡)

𝑀

𝑖=1

+ ⋯ (26) 

 

We noted that 𝜓1(𝑥), 𝜓3(𝑥), 𝜓5(𝑥), etc. are even functions or symmetric mode functions and 

𝜓2(𝑥), 𝜓4(𝑥), 𝜓6(𝑥), etc. are odd functions or anti-symmetric mode functions. According to the 

technique mentioned above, Eq. 26 can be written as follow. 

 
𝑤(𝑥, 𝑦, 𝑡) = ∑ 𝜙𝑖(𝑦)𝜓1(𝑥)𝑞𝑖1(𝑡)

𝑀

𝑖=1

+ ∑ 𝜃𝑖(𝑦)𝜓2(𝑥)𝑞𝑖2(𝑡)

𝑀

𝑖=1

+ ∑ 𝜙𝑖(𝑦)𝜓3(𝑥)𝑞𝑖3(𝑡)

𝑀

𝑖=1

+ ⋯ (27) 

 

As it can be seen in Eq. 27, the bending mode shapes 𝜙𝑖(𝑦) have been replaced by the torsional 

mode shapes 𝜃𝑖(𝑦) in series contain anti-symmetric mode functions. In addition, by using this 

technique in the Rayleigh-Ritz method, two sets of completely decoupled equations will be 

formed. In other words, the number of equations of the plate is divided into two different sets. 

One set is the equations governing the symmetric modes and another includes equations 

governing the anti-symmetric modes. In this way, the total number of equations of the cantilever 

plate which have to be solved simultaneously is divided by two. Therefore, the computational 

time needed for the solution of the equations is reduced significantly. This could be also an asset 

in circumstances when we have a constraint in choosing the admissible functions for the 

Rayleigh-Ritz method. In cases, when the quality of the admissible functions for the rectangular 

cantilever plate is not as well as beam characteristic functions, which according to the literature 

is the best choice for the Rayleigh-Ritz method, it is needed to increase the number of mode 

functions to compensate for the quality of the admissible functions. This action ends up 

increasing the computational the time significantly. However, using the technique mentioned 

above lead to a reduction of time needed to solve the equations considerably. In the next part, by 

using the experimental data the evaluation of the mentioned technique is done.  

  

3.1.2.Comparison between the theory and experiment 

In this part, comparisons are made between theory and experiment. The experimental data 

obtained at Duke University including those published in [25] as well as previously unpublished 

data. The out of plane motions of the rectangular cantilever plate has been estimated by the 

Rayleigh-Ritz method. However, we should note that in this method the modes of the plate have 

been divided into two different sets. I: symmetric modes and II: Anti-symmetric modes. First, we 

use bending mode functions of a uniform cantilever beam for both the symmetric and anti-

symmetric mode functions. In the next step, we consider the torsional and bending mode 
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functions of a uniform cantilever beam for the anti-symmetric and symmetric mode functions, 

respectively. 

As we mentioned above, using the form of distribution mentioned in Eq. 26 provides differential 

equations governing symmetric and anti-symmetric mode shapes, separately. This separation 

enables us to use different mode shapes along the 𝑥 axis for symmetric and anti-symmetric mode 

shapes. Table 4 presents how the torsional frequency is affected by using various types of mode 

shapes. We noted that considering the torsional mode functions of a uniform cantilever beam for 

the anti-symmetric mode functions, does not affect the bending frequencies. Therefore, we have 

only discussed how various types of mode shapes affect the torsional frequency. 

Table 4. The effect of the mode shapes on Torsional frequency 

 Frequency (Hz) 

Dimensions 275 mm × 151 mm 275 mm × 108 mm 275 mm × 55 mm 

Trial Functions First Torsion Second Torsion First Torsion Second Torsion First Torsion Second Torsion 

Bending–Bending 

modes (BB) 
16.6120 55.1597 22.1618 70.8790 41.7057 127.6858 

Bending– Torsional 

modes (BT) 
14.4960 50.3267 20.0566 65.2839 39.4449 121.0679 

Experimental (EX) 18.56 58.63 23.41 70.87 38.43 119.3 

Percent Difference 

(between BB and 

EX) 
10.5 6 5.5 ≈ 0 8.5 7 

Percent Difference 

(between BT and 

EX) 
22 14 14.5 8 2.5 1.5 

 

As it can be seen from Table 4, for the rectangular cantilever plates of dimensions 275 mm × 

151 mm and 275 mm × 108 mm the use of bending mode shapes of a uniform cantilever beam 

for both the anti-symmetric and symmetric modes lead to natural frequencies closer to the 

experimental values. The most compatible results of the use of bending mode shapes of a 

uniform cantilever beam for both the anti-symmetric and symmetric modes are for the plate with 

dimensions 275 mm × 108 mm. For a cantilever plate with an aspect ratio of 𝐴𝑅 = 275/55 = 5, 

using bending mode shapes of a uniform cantilever beam for both the anti-symmetric and 

symmetric modes leads to upper bound values for the natural torsional frequencies as compared 

to the experimental values. While, for a cantilever plate with an aspect ratio of 𝐴𝑅 =
275/151 ≈ 1.8, using bending mode shapes of a uniform cantilever beam for both the anti-

symmetric and symmetric modes leads to lower bound values for the natural torsional 

frequencies as compared to the experimental values. So, it can be concluded that when the aspect 

ratio is increased from 1.8 to 2.5, the accuracy of the theory with the use of bending mode shapes 

is increasing. While, by the increase of the aspect ratio from 2.5 to 5, the distance between the 

experimental values and results obtained from the theory with the use of bending mode shapes is 

becoming larger. It is apparent from this table that for a cantilever plate with aspect ratios 5, the 

approximation of anti-symmetric mode shapes by the natural beam torsional mode shapes 

significantly improves the accuracy of predicted natural torsional frequencies.  
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(a) First torsional frequency 

 

(b) Second torsional frequency 

Fig 2: Experimental vs. theoretical torsional natural frequencies. 

Fig. 2 shows the theoretical versus experimental torsional natural frequencies for the three 

plates considered in this study. There is good agreement between both theories and the 

experiment in trend. However, as we noted earlier, for lower aspect ratios, the results obtained 

from the use of bending mode shapes of a uniform cantilever beam for both the anti-symmetric 

and symmetric modes are more compatible with the experimental data in magnitude. By the 

increase of the aspect ratio, the approximation of anti-symmetric mode shapes by the natural 

beam torsional mode shapes leads to the natural torsional frequencies closer to the 

experimental data. 

 

3.2.The aeroelastic analysis 

So far, the free vibrations response of a cantilever plate obtained from using different types of 

admissible functions in the Rayleigh-Ritz method is discussed. It was shown that for a cantilever 

plate with aspect ratios 5, using the natural beam torsional mode shapes for the approximation of 

anti-symmetric modes, significantly improves the accuracy of predicted natural torsional 

frequencies. Also, we know that the aeroelastic flutter of a rectangular cantilever plate is the 

bending-torsion type. Therefore, it is predicted that the first torsional and bending modes to be 
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effective factors for determining the speed of flutter. Therefore, it would be desired to investigate 

the impact of using different kinds of admissible functions for both the anti-symmetric and 

symmetric modes on the aeroelastic response of a rectangular cantilever plate. Therefore, the 

speed of flutter for a plate of an aspect ratio 5, has been determined theoretically and compared 

with the experiment. 

Figures 3 presents the aeroelastic damping with respect to flow velocity using bending mode 

shapes of a uniform cantilever beam for both the anti-symmetric and symmetric modes and 

compares with the results derived from the use of the natural beam torsional mode shapes for 

anti-symmetric modes. Figure 3 contains the real component of the eigenvalue plotted versus the 

flow velocity. In other words, the damping value in Figure 3 is the real part of the                              

characteristic equation’s roots of the aeroelastic system. The form of the characteristic equation’s 

roots of the aeroelastic system, same as the characteristic equation’s roots of the ordinary mass 

spring damper system, is 𝜉𝜔𝑛 ± 𝑖√1 − 𝜉2 𝜔𝑛. 𝜉 is dimensionless and the dimension of 𝜔𝑛 is one 

per second. So the dimension of the damping is one per second. Figure 3 reveals that for a 

cantilever plate with a moderate aspect ratio (aspect ratio around 5), the approximation of anti-

symmetric modes by the natural beam torsional mode shapes increases the compatibility between 

the theoretical and experimental results, in comparison to the use of bending mode shapes of a 

uniform cantilever beam for both the anti-symmetric and symmetric modes. In addition, it can be 

seen from Fig. 3, that using bending mode shapes for both the anti-symmetric and symmetric 

modes leads to upper flutter speed. This can be explained by the fact that using bending mode 

shapes for both the anti-symmetric and symmetric modes, causes higher torsional stiffness and 

consequently higher torsional frequencies. The higher torsional stiffness can delay the flutter 

boundary of the structure.  

Table 5 presents the speed of flutter for a 275 mm × 55 mm cantilever plate derived from the 

plate theory by using different kinds of mode shapes and compares the results to the 

experimental data. The speed of flutter obtained by using the beam torsional mode shapes is 

much closer to the experimental values. The percent difference for the flutter speed between the 

result obtained from the use of bending mode shapes of a uniform cantilever beam for both the 

anti-symmetric and symmetric modes and the experimental value is 24 percent. The 

approximation of anti-symmetric modes by the natural beam torsional mode shapes leads to a 

significant reduction of the difference to the value of 8 percent. 

From Table 4, we can see that there is an 8 percent difference between the first torsional 

frequency obtained from the use of bending mode shapes of a uniform cantilever beam for both 

the symmetric and anti-symmetric modes and the experiment. The use of torsional mode shapes 

of a uniform cantilever beam for the anti-symmetric modes reduces the difference between the 

theory and experiment to 2.5 percent. By comparison the difference between theoretical and 

experimental data in both the free vibrations and aeroelastic analyses, it can be concluded that 

the difference in structural models leads to a more significant difference in the aeroelastic 

response. 2.5 and 8 present differences in the structural models end up having 8 and 24 present 

differences in the aeroelastic models. Therefore, selecting an appropriate admissible function to 

approximate the structural response of a rectangular cantilever plate is of great importance. 
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Fig 3: Damping with respect to velocity using different kinds of mode shapes 

Table 5: The speed of flutter for a 275 mm × 55 mm rectangular plate 

 Bending-Torsional Modes Bending-Bending Modes Experimental Result 

Flutter 

Speed (m/s) 
18.1 20.9 16.7 

 

4. Conclusion 

In the present study, the free vibrations and aeroelastic problems of rectangular cantilever plates 

with varying aspect ratio have been investigated by using the classical plate theory based on the 

Kirchhoff hypothesis. The Peter’s theory is selected to model the aerodynamic pressure on the 

plate due to the incompressible air flow. To discretize the partial differential equations of the 

system, the Rayleigh-Ritz method has been applied and by using Lagrange equations, the mass, 

damping, and stiffness matrices have been derived. Various numbers of mode shapes are used to 

show the convergence of the system’s response. The theoretical results including the natural 

frequencies and flutter speed have been evaluated by using the experimental data. A summary of 

the results is as follows: 

The convergence test using a different number of mode shapes in each direction proved that 

taking two modes in the chord direction is sufficient to determine the first five natural 

frequencies of a cantilever plate with an aspect ratio above 𝐴𝑅 = 1.8 

The final equations obtained from the classical plate theory can be divided into two sets of 

decoupled equations governing symmetry and anti-symmetry mode functions. This separation 

enables us to use different mode shapes along the 𝑥 axis for symmetry and anti-symmetry mode 

functions. For a cantilever plate with a moderate aspect ratio (aspect ratio around 5), the 

approximation of anti-symmetric mode shapes by the natural beam torsional mode shapes 
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significantly improves the accuracy of predicted natural torsional frequencies. It should be noted 

that this change does not have any effects on the natural bending frequency. Furthermore, as a 

result of two decoupled set of equations, the number of equations which have to be solved 

simultaneously is divided by two. This could lead to a reduction of computational time by one-

fifth. For my case study and with my system, when 𝑀 = 𝑁 = 5, the computational time 

decreased from 960 seconds to 166 seconds. 

For a cantilever plate with aspect ratio 𝐴𝑅 = 1.8, using bending mode shapes of a uniform 

cantilever beam for both the anti-symmetric and symmetric modes leads to lower bound values 

for the natural torsional frequencies as compared to the experimental values. While, For a 

cantilever plate with aspect ratio 𝐴𝑅 = 5, using bending mode shapes of a uniform cantilever 

beam for both the anti-symmetric and symmetric modes leads to upper bound values for the 

natural torsional frequencies as compared to the experimental values. 

With the increase of the aspect ratio from 1.8 to 2.5, the accuracy of the theory with the use of 

bending mode shapes is increasing. While, by increasing the aspect ratio from 2.5 to 5, the 

distance between the experimental values and results obtained from the theory with the use of 

bending mode shapes is becoming larger. 

For a cantilever plate with a moderate aspect ratio, the approximation of anti-symmetric modes 

by the natural beam torsional mode shapes leads to the theoretical results closer to the 

experiment, in comparison to the use of bending mode shapes of a uniform cantilever beam for 

both the anti-symmetric and symmetric modes. 

By comparison the difference between theoretical and experimental data in both the free 

vibrations and aeroelastic analyses, it can be concluded that the difference in structural models 

leads to a more significant difference in the aeroelastic response. 2.5 and 8 present differences in 

the structural models end up having 8 and 24 present differences in the aeroelastic models. 

Therefore, selecting an appropriate admissible function to approximate the structural response of 

a rectangular cantilever plate is of great importance. 

Using bending mode shapes for both the anti-symmetric and symmetric modes causes higher 

torsional stiffness and consequently higher torsional frequencies. The higher torsional stiffness 

can delay the flutter boundary of the structure. 
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