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An exact closed-form solution was introduced to analyze axisymmetric free 

damped vibration of circular magnetorheological fluid (MRF) sandwich 

plate. Hamilton principle, as well as the classical thin plate theory were used 

to extract three fully coupled governing equations of motion and the 

corresponding boundary conditions. Shear modulus of the MRF was tunable 

by changing a magnetic field which was perpendicular to the mid-plane of 

the plate. Using two new functions named as phase and anti-phase in-plane 

displacement functions (PIDF and AIDF), transverse displacement of the 

sandwich plate was firstly decoupled and finally, in-plane displacements of 

the top and bottom layers were extracted to obtain the frequency equation 

for clamped, simply supported and free boundary conditions. Accuracy and 

stability of results were assessed according to a finite element analysis. The 

role of various parameters on variations of natural frequencies and loss 

factors was investigated. Considering obtained results, it was found that 

despite the insensitivity of natural frequencies to the intensity of the 

magnetic field and the MRF thickness variations, the loss factors showed 

high sensitivity to these parameters. Also, the slope of the plate has a 

significant role in the dissipated energy of the sandwich circular plate. These 

findings can be applied by engineers and researchers in designing 

magnetically controlled devices such as brakes or clutches and heavy motor 

dampers. 
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1. Introduction 

Applications of magnetorheological fluids in mechanical structures are increasing dramatically 

and this justifies the necessity of scientific research on this subject. The MRFs are implemented 

as controllable layers between elastic layers of structure and can improve the vibration control 

performance in a wide frequency range [1]. These smart materials supply reversible and rapid 

changes of damping and stiffness due to the magnetic field intensity. 

Due to its special shape, circular sandwich plates have attracted more attention than other plate 

types in engineering applications, especially in rotating components and where high stiffness to 

weight ratio is needed. Employing the MRF layer in a sandwich plate for vibration attenuation is 

a low-cost and reliable method in which some researchers have used them. Eshaghi et al.[2-4] 

reported experimental and theoretical studies of vibration analysis and optimum design of 

magnetorheological fluid rectangular and circular sandwich plates. A finite element model and 

Ritz method were employed to solve the problem using the Kirchhoff plate theory. Ghorbanpour 

Arani et al.[5] analyzed vibration behavior of a magnetorheological rectangular sandwich plate 

resting on a visco-Pasternak foundation. The sandwich plate consisted of viscoelastic 

nanocomposite face sheets. The equations of motion were derived by using Hamilton’s principle 

and solved by employing an appropriate analytical method. Arumugam et al. [6] studied the 

dynamic and instability analysis of a rotating composite MRF sandwich plate exposed to a 

periodic in-plane loading. The equation of motion was derived based on the classical laminated 

plate theory and provided in the finite element formulation. Hasheminejad and Maleki [7] 

developed a dynamic model for the vibrational response of a rectangular electrorheological 

sandwich plate subjected to a general harmonic transverse excitation. Yeh [8] investigated free 

vibration of rectangular sandwich plates with magnetorheological elastomer core. Modal damper 

and natural frequencies of the sandwich plate were presented by utilizing the finite element 

method. Manoharan et al. [9] considered the dynamic properties of a laminated composite 

magnetorheological fluid sandwich plate.The equations of motion were reformulated and solved 

by using a finite element formulation. Joseph and Mohanty [10, 11] presented the modal and 

buckling analysis of a skew viscoelastic sandwich plate containing a functionally graded 

constraining layer. The finite element method, as well as the Mindlin plate theory, was used to 

solve the plate problem. Ying et al. [12] constructed sandwich plates with a magnetorheological 

core for micro-vibration control. The sandwich plate under stochastic support motion excitation 

was studied. Yeh [13] analyzed free vibration of rotating polar orthotropic sandwich annular 

plate with electrorheological fluid core. Hasheminejad et al. [14] and Rahiminasab and 

Rezaeepazhand [15] studied the aeroelastic stability of electrorheological fluid sandwich plates. 

Amir et al. [16] investigated on free vibration of MRF circular plates with magnetostrictive face 

layers and resting on visco-Pasternak elastic foundation. Soror et al. [17] studied vibration 

analysis of MRF sandwich beams containing an axially functionally graded constraining layer. 

Ebrahimi and Sedighi [18] presented a study of wave propagation of a rectangular sandwich 

composite plate with a tunable magnetorheological fluid core. Ghorbanpour Arani and Jamali 

[19] considered the vibration behavior of a cylindrically curved sandwich plate resting on 

Winkler–Pasternak substrate. 

According to the comprehensive literature survey, despite being many papers in the field of 

vibration analysis of magnetorheological circular sandwich plate, an exact closed-form solution 

procedure has been neglected. Hence, this paper presented a new analytical solution to obtain 
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natural frequencies, corresponding loss factors, and vibrational mode shapes of adaptive circular 

sandwich plates with the MRFs core. The main difference between the present analytical 

procedure and those reported by the literature laid in that in this study, the vibration behavior of a 

circular MRF sandwich plate was analytically investigated using new auxiliary functions as the 

phase and anti-phase in-plane displacement functions. Finally, the in-plane and out-of-plane 

displacements of the plate were exactly decoupled. Validation and parametric studies were 

carried out for various boundary conditions such as clamped, simply supported, and free. 

2. Mathematical formulations 

2.1. Configuration and constitutive relations 

A three-layer solid circular sandwich plate including two top and bottom Aluminum layers and 

one MRF core layer is showed in Fig. 1. The plate has radius R and face layer thicknesses h. 

Also, the core thickness is nominated as H. The following assumptions were considered as 

1: Slippage between the elastic layers and the core one is negligible. 

2: The transverse displacements of the top and bottom layers should be equal. 

3: The skins are included in a plane strain contemplate. 

4: An axisymmetric motion is supposed for the plate. 

Therefore, based on the thin plate theory, the displacement filed of top and bottom layers can be 

written as [3] 

 
𝑢𝑟

(𝑗)
(𝑟, 𝑧𝑗, 𝑡) = 𝑢(𝑗)(𝑟, 𝑡) − 𝑧𝑗

𝜕𝑤(𝑟, 𝑡)

𝜕𝑟
 (1a) 

 𝑢𝜃
(𝑗)

(𝑟, 𝑧𝑗 , 𝑡) = 0 (1b) 

 𝑢𝑧
(𝑗)

(𝑟, 𝑧𝑗 , 𝑡) = 𝑤(𝑟, 𝑡) (1c) 

where j=1 and 3 correspond to the top and bottom layers, respectively. t is time. The (𝑟, 𝜃, 𝑧), 
(𝑟, 𝜃, 𝑧1) and (𝑟, 𝜃, 𝑧2) are the polar coordinate systems originated at the center of the circular 

plate resting on the middle surface of the core, top and bottom layers, respectively. 𝑢(1)(𝑟, 𝑡) and 

𝑢(3)(𝑟, 𝑡) are the axisymmetric in-plane displacements of top, and bottom layers, respectively. 

𝑤(𝑟, 𝑡) is the axisymmetric transverse displacement of the plate. 

 

Fig. 1. Configuration of an MR solid circular sandwich plate. a) 3D view b) Cross section. 
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Due to the aforementioned assumptions, the MRF layer will only be exposed by a shear strain 

𝛾𝑟𝑧. Also, normal strains 𝜀𝑟𝑟
(𝑗)

 and 𝜀𝜃𝜃
(𝑗)

 are produced in the elastic layers as [3] 

 
𝛾𝑟𝑧 =

𝐷

𝐻

𝜕𝑤

𝜕𝑟
+

𝑢(1) − 𝑢(3)

𝐻
 (2a) 

 
𝜀𝑟𝑟

(𝑗)
=

𝜕𝑢𝑟
(𝑗)

𝜕𝑟
 (2b) 

 
𝜀𝜃𝜃

(𝑗)
=

𝑢𝑟
(𝑗)

𝑟
   ,    𝑗 = 1, (2c) 

 

where D=H+h. 

Based on the Hook’s law, we can write as 

 𝜎𝑟𝑧 = 𝐺̃𝛾𝑟𝑧 
(3a) 

 𝜎𝑟𝑟
(𝑗)

=
𝐸

(1 − 𝜈2)
(𝜀𝑟𝑟

(𝑗)
+ 𝜈𝜀𝜃𝜃

(𝑗)
) (3b) 

 𝜎𝜃𝜃
(𝑗)

=
𝐸

(1 − 𝜈2)
(𝜀𝜃𝜃

(𝑗)
+ 𝜈𝜀𝑟𝑟

(𝑗)
)    ,    𝑗 = 1,3 (3c) 

 

where E and v are the elasticity modulus and Poisson’s ratio of the face layers, respectively. The 

shear modulus of the MRF core layer 𝐺̃ is defined as [3] 

 𝐺̃ = 𝐺∗ + 𝑖𝐺 , 𝑖 = √−1 (4) 

 

where the loss modulus (𝐺) and the storage modulus (𝐺∗) are determined as [3] 

 𝐺∗ = −3.3691𝐵2 + 4997.5𝐵 + 0.873 × 106 
(5a) 

 𝐺 = −0.9𝐵2 + 812.4𝐵 + 0.1855 × 106 
(5b) 

 

where 𝐵 is the magnetic field intensity in Gauss. 

2.2. The governing equations 

Hamilton’s principle is employed to obtain the equations of motion and corresponding boundary 

conditions as 

 
δ ∫ (𝑇 − 𝑈)𝑑𝑡 = 0

𝑡

0

 (6) 

 

where δ is the variational operator. T and U are the total kinetic and strain energies as [3] 
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δ𝑈 = ∑ ∫ ∫ (𝜎𝑟𝑟

(𝑗)
𝛿𝜀𝑟𝑟

(𝑗)
+ 𝜎𝜃𝜃

(𝑗)
𝛿𝜀𝜃𝜃

(𝑗)
) 𝑟𝑑𝑧𝑗𝑑𝑟 + ∫ ∫ (𝜎𝑟𝑧𝛿𝛾𝑟𝑧)𝑟𝑑𝑧𝑑𝑟

𝐻
2

−
𝐻
2

𝑅

0

ℎ
2

−
ℎ
2

𝑅

0𝑗=1,3

 (7a) 

 
δ𝑇 = ∑ ∫ ∫ (𝜌𝑗(𝑢̇𝑟

(𝑗)
𝛿𝑢̇𝑟

(𝑗)
+ 𝑤̇(𝑗)𝛿𝑤̇(𝑗))𝑟𝑑𝑧𝑗𝑑𝑟 + ∫ [(𝜌2

𝑅

0

ℎ
2

− 
ℎ
2

𝑅

0𝑗=1,3

𝐻(𝑤̇𝛿𝑤̇)

+ 𝐼2(𝛾̇𝑟𝑧𝛿𝛾̇𝑟𝑧)]𝑟𝑑𝑟   

(7b) 

 

where the dot notation ( )̇ is the first partial derivative with respect to t. Substituting Eqs. (7) into 

(6) as well as using the integration by parts leads to 

 
(

𝜕𝑁𝑟𝑟
(1)

𝜕𝑟
 𝑟) + 𝑁𝑟𝑟

(1)
− 𝑁𝜃𝜃

(1)
−

𝑄𝑟𝑧 

𝐻
𝑟 = 𝑟𝐼11𝑢̈(1) + 𝑟

𝐼2𝐷

𝐻2

𝜕𝑤̈

𝜕𝑟
+ 𝑟𝐼2

𝑢̈(1)

𝐻2
− 𝑟𝐼2

𝑢̈(3)

𝐻2
 (8a) 

 
(

𝜕𝑁𝑟𝑟
(3)

𝜕𝑟
 𝑟) + 𝑁𝑟𝑟

(3)
− 𝑁𝜃𝜃

(3)
+

𝑄𝑟𝑧 

𝐻
𝑟 = 𝑟𝐼31𝑢̈(3) − 𝑟

𝐼2𝐷

𝐻2

𝜕𝑤̈

𝜕𝑟
− 𝑟𝐼2

𝑢̈(1)

𝐻2
+ 𝑟𝐼2

𝑢̈(3)

𝐻2
 (8b) 

 
(

𝜕2𝑀𝑟𝑟
(1)

𝜕𝑟2
 𝑟) + 2

𝜕𝑀𝑟𝑟
(1)

𝜕𝑟
−

𝜕𝑀𝜃𝜃
(1)

𝜕𝑟
+ (

𝜕2𝑀𝑟𝑟
(3)

𝜕𝑟2
 𝑟) + 2

𝜕𝑀𝑟𝑟
(3)

𝜕𝑟
−

𝜕𝑀𝜃𝜃
(1)

𝜕𝑟
+ (𝑟 

𝐷

𝐻

𝜕𝑄𝑟𝑧

𝜕𝑟
)

+
𝐷

𝐻
𝑄𝑟𝑧

= −𝑟𝐼22

𝜕2𝑤̈

𝜕𝑟2
+ 𝑟𝐼11𝑤̈ − 𝐼33

𝜕𝑤̈

𝜕𝑟
+ 𝑟𝐼31𝑤̈ + 𝑟𝐼21𝑤̈ −

𝐼2𝐷2

𝐻2

𝜕𝑤̈

𝜕𝑟

− 𝑟
𝐼2𝐷2

𝐻2

𝜕2𝑤̈

𝜕𝑟2
−

𝐼2𝐷

𝐻2
𝑢̈(1) +

𝐼2𝐷

𝐻2
𝑢̈(3) − 𝐼22

𝜕𝑤̈

𝜕𝑟
− 𝑟𝐼33

𝜕2𝑤̈

𝜕𝑟2
− 𝑟𝐼2

𝐷

𝐻2

𝜕𝑢̈(1)

𝜕𝑟

+ 𝑟𝐼2

𝐷

𝐻2

𝜕𝑢̈(3)

𝜕𝑟
 

(8c) 

 

where the double dot notation ( )̈ is the second partial derivative with respect to t and 

 
(𝑁𝑟𝑟

(𝑗)
, 𝑁𝜃𝜃

(𝑗)
) = ∫ (𝜎𝑟𝑟

(𝑗)
, 𝜎𝜃𝜃

(𝑗)
)𝑑𝑧𝑗      

ℎ
2

− 
ℎ
2

 (9a) 

 
(𝑀𝑟𝑟

(𝑗)
, 𝑀𝜃𝜃

(𝑗)
) = ∫ (𝜎𝑟𝑟

(𝑗)
𝑧𝑗 , 𝜎𝜃𝜃

(𝑗)
𝑧𝑗)𝑑𝑧𝑗

ℎ
2

− 
ℎ
2

 (9b) 

 
𝑄𝑟𝑧 = ∫ 𝜎𝑟𝑧𝑑𝑧

𝐻
2

− 
𝐻
2

 (9c) 

 
𝐼31 = 𝐼11 = ∫ 𝜌𝑗𝑑𝑧𝑗

ℎ
2

− 
ℎ
2

   ,   𝐼22 = 𝐼33 = ∫ 𝜌𝑗𝑧𝑗
2𝑑𝑧𝑗

ℎ
2

− 
ℎ
2

  ,

𝐼21 = ∫ 𝜌2𝑑𝑧

𝐻
2

− 
𝐻
2

   ,   𝐼2 = ∫ 𝜌2𝑧2𝑑𝑧

𝐻
2

−
𝐻
2

         ,        𝑗 = 1,3 

(9d) 

where 𝜌𝑗  (𝑗 = 1,3) and  𝜌2 are mass density of the face layers and the MRF core layer, 

respectively. Also, the corresponding boundary conditions of plate’s outer edge (i.e. at 𝑟 = 𝑅) 

are derived as 
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Clamped edge: 

 𝑤 = 0 , 𝑢(1) = 0 , 𝑢(3) = 0 ,
𝜕𝑤

𝜕𝑟
= 0 (10a) 

Simply supported edge: 

 𝑁𝑟𝑟
(1)

= 0 , 𝑁𝑟𝑟
(3)

= 0 , 𝑤 = 0  , 𝑀𝑟𝑟
(1)

+ 𝑀𝑟𝑟
(3)

= 0 (10b) 

Free edge: 

 𝑁𝑟𝑟
(1)

= 0 , 𝑁𝑟𝑟
(3)

= 0 , 𝑀𝑟𝑟
(1)

+ 𝑀𝑟𝑟
(3)

= 0 0, 𝑟
𝜕𝑀𝑟𝑟

(1)

𝜕𝑟
+ 𝑀𝑟𝑟

(1)
− 𝑀𝜃𝜃

(1)
+  𝑟

𝜕𝑀𝑟𝑟
(3)

𝜕𝑟
+ 𝑀𝑟𝑟

(3)
− 𝑀𝜃𝜃

(3)
+ 𝑟

𝐷

𝐻
𝑄𝑟𝑧 + 𝑟𝐼22

𝜕𝑤̈

𝜕𝑟

+ 𝑟𝐼33

𝜕𝑤̈

𝜕𝑟
+ 𝑟

𝐼2𝐷2

𝐻2

𝜕𝑤̈

𝜕𝑟
+ 𝑟𝐼2

𝐷

𝐻2
𝑢̈(1) − 𝑟𝐼2

𝐷

𝐻2
𝑢̈(3) = 0 

(10c) 

Where 

 
𝑁𝑟𝑟

(𝑗)
= [(𝐴

𝜕𝑢(𝑗)

𝜕𝑟
) + 𝜈 (𝐴

𝑢(𝑗)

𝑟
)]   ,   𝑁𝜃𝜃

(𝑗)
= [(𝐴

𝑢(𝑗)

𝑟
) + 𝜈 (𝐴

𝜕𝑢(𝑗)

𝜕𝑟
)] (11a) 

 
𝑀𝑟𝑟

(𝑗)
= [(−𝐶

𝜕2𝑤

𝜕𝑟2
) + 𝜈 (−𝐶

𝜕𝑤

𝑟𝜕𝑟
)]  ,   𝑀𝜃𝜃

(𝑗)
= [(−𝐶

𝜕𝑤

𝑟𝜕𝑟
) + 𝜈 (−𝐶

𝜕𝑢(𝑗)

𝜕𝑟
)] (11b) 

 𝑄𝑟𝑧 = [𝐺̃𝐷
𝜕𝑤

𝜕𝑟
+ 𝐺̃(𝑢(1) − 𝑢(3))] (11c) 

 
𝐴 = ∫

𝐸

(1 − 𝜈2)
𝑑𝑧𝑗    ,   𝐶 = ∫

𝐸

(1 − 𝜈2)
𝑧𝑗

2𝑑𝑧𝑗

ℎ
2

−
ℎ
2

ℎ
2

−
ℎ
2

 
(11d) 

 

Because the geometry and material of the top and bottom layers are similar, A and C coefficients 

are equal for both layers. Now, due to assuming a harmonic motion for the plate, we can show 

the displacement components as [3] 

 𝑢(𝑗)(𝑟, 𝑡) = 𝑢̃(𝑗)(𝑟)𝑒𝑖𝜔𝑡 
(12a) 

 𝑤(𝑟, 𝑡) = 𝑤̃(𝑟)𝑒𝑖𝜔𝑡 
(12b) 

 

where 𝜔 is the complex natural frequency. Employing of Eqs. (9), (11), and (12) into (8) and 

doing some simplifications, the equations of motion can be reformulated as 

 
𝐴∇2𝑢̃(1) − 𝐴

𝑢̃(1)

𝑟2
+ 𝑢̃(1) [−

𝐺̃

𝐻
+ 𝜆𝐼11 +

𝜆𝐼2

𝐻2
] + 𝑢̃(3) [

𝐺̃

𝐻
−

𝜆𝐼2

𝐻2
]  +

𝜕𝑤̃

𝜕𝑟
[
𝜆𝐼2𝐷

𝐻2
−

𝐺̃𝐷

𝐻
] = 0 (13a) 

 
𝐴∇2𝑢̃(3) − 𝐴

𝑢̃(3)

𝑟2
+ 𝑢̃(3) [−

𝐺̃

𝐻
+ 𝜆𝐼11 +

𝜆𝐼2

𝐻2
] + 𝑢̃(1) [

𝐺̃

𝐻
−

𝜆𝐼2

𝐻2
]                            

+
𝜕𝑤̃

𝜕𝑟
[−

𝜆𝐼2𝐷

𝐻2
+

𝐺̃𝐷

𝐻
] = 0 

(13b) 
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−2𝐶∇4𝑤̃ +

𝐷2𝐺̃

𝐻
∇2𝑤̃ −

𝐼2𝐷2𝜆

𝐻2
∇2𝑤̃ − 2𝐼22𝜆∇2𝑤̃ + (2𝐼11𝜆 + 𝐼21𝜆)𝑤̃   

+ (
𝐷𝐺̃

𝐻
−

𝐼2𝐷𝜆

𝐻2
) (

𝑢̃(1)

𝑟
−

𝑢̃(3)

𝑟
) + (

𝐷𝐺̃

𝐻
−

𝐼2𝐷𝜆

𝐻2
) (

𝜕𝑢̃(1)

𝜕𝑟
−

𝜕𝑢̃(3)

𝜕𝑟
) = 0 

(13c) 

 

where 𝜆 = 𝜔2. Also, ∇2 and ∇4 are the Laplace and bi-Laplace operators. 

2.3. The exact solution procedure 

Now, we introduce two new functions named as the phase and anti-phase in-plane displacement 

functions abbreviated as the PIDF and AIDF, respectively, as 

 𝑓 = 𝑢̃(1) + 𝑢̃(3) 
(14a) 

 𝑔 = 𝑢̃(1) − 𝑢̃(3) 
(14b) 

 

The phase in-plane displacement function f represents the sum of in-plane displacements of face 

layers, whereas the anti-phase in-plane displacement function g represents the magnitude of 

difference between in-plane displacements of face layers. Effects of the in-plane stiffness of 

sandwich plate on its transverse vibration severely depend on the phase function f. In other 

words, decreasing the values of the f function leads to decoupling the Eq. (13c) from Eqs. (13a-

b) and consequently, the in-plane (𝑢̃(1), 𝑢̃(3)) and transverse (𝑤̃) displacements will be solved 

separately[20]. Also, Eq. (2a) reveals that the shear strain in the MRF core depends on the anti-

phase function g. Hence, increasing the g function leads to increasing the shear strain energy and 

the total stiffness of the sandwich plate. Based on the reasons mentioned above, it is obvious that 

two-phase and anti-phase functions (i.e., f and g) have a crucial role in the vibration behavior of 

the circular MRF sandwich plate. Therefore, the authors decided to use the PIDF and AIDF in 

the following closed-form solution. 

Substitution of Eqs. (14) into (13) leads to 

 
𝐴∇2 (

𝑓 + 𝑔

2
) − 𝐴

(𝑓 + 𝑔)

2𝑟2
+ (

𝑓 + 𝑔

2
) [−

𝐺̃

𝐻
+ 𝜆𝐼11 +

𝜆𝐼2

𝐻2
] + (

𝑓 − 𝑔

2
) [

𝐺̃

𝐻
−

𝜆𝐼2

𝐻2
]  

+
𝜕𝑤̃

𝜕𝑟
[
𝜆𝐼2𝐷

𝐻2
−

𝐺̃𝐷

𝐻
] = 0 

(15a) 

 
𝐴∇2 (

𝑓 − 𝑔

2
) − 𝐴

(𝑓 − 𝑔)

2𝑟2
+ (

𝑓 − 𝑔

2
) [−

𝐺̃

𝐻
+ 𝜆𝐼11 +

𝜆𝐼2

𝐻2
] + (

𝑓 + 𝑔

2
) [

𝐺̃

𝐻
−

𝜆𝐼2

𝐻2
]

+
𝜕𝑤̃

𝜕𝑟
[−

𝜆𝐼2𝐷

𝐻2
+

𝐺̃𝐷

𝐻
] = 0 

(15b) 

 
−2𝐶∇4𝑤̃ +

𝐷2𝐺̃

𝐻
∇2𝑤̃ −

𝐼2𝐷2𝜆

𝐻2
∇2𝑤̃ − 2𝐼22𝜆∇2𝑤̃ + (2𝐼11𝜆 + 𝐼21𝜆)𝑤̃   + (

𝐷𝐺̃

𝐻
−

𝐼2𝐷𝜆

𝐻2
) (

𝑔

𝑟
)

+ (
𝐷𝐺̃

𝐻
−

𝐼2𝐷𝜆

𝐻2
) (

𝜕𝑔

𝜕𝑟
) = 0 

(15c) 

 

Now, summing and subtracting Eqs. (15a) and (15b) give respectively as 



S.M. Alavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 6(2) 233-248 (2020) 

240 

 

 𝐴∇2𝑓 −
𝐴

𝑟2
𝑓 + 𝜆𝐼11𝑓 = 0 (16a) 

 
𝐴∇2𝑔 −

𝐴

𝑟2
𝑔 + 2 (

𝜆𝐼2𝐷

𝐻2
−

𝐺̃𝐷

𝐻
)

𝜕𝑤̃

𝜕𝑟
 + (2

𝜆𝐼2

𝐻2
− 2

𝐺̃

𝐻
+ 𝜆𝐼11) 𝑔 = 0 (16b) 

 

Introducing a new function as 

 𝑝 =
𝜕𝑔

𝜕𝑟
+

𝑔

𝑟
 (17) 

 

 we can reformulate Eq. (16b) and Eq. (15c) as 

 𝜕(𝐸𝑞. (16𝑏))

𝜕𝑟
+

(𝐸𝑞. (16𝑏))

𝑟
 

(18a) 
 

𝐴∇2𝑝 + 2 (
𝜆𝐼2𝐷

𝐻2
−

𝐺̃𝐷

𝐻
) ∇2𝑤̃  + (2

𝜆𝐼2

𝐻2
− 2

𝐺̃

𝐻
+ 𝜆𝐼11) 𝑝 = 0 

 𝐸𝑞. (15𝑐): 

 

(18b) 
 

−2𝐶∇4𝑤̃ + (
𝐷2𝐺̃

𝐻
−

𝐼2𝐷2𝜆

𝐻2
− 2𝐼22𝜆)∇2𝑤̃ + (2𝐼11𝜆 + 𝐼21𝜆)𝑤̃ + (

𝐷𝐺̃

𝐻
−

𝐼2𝐷𝜆

𝐻2
) 𝑝 = 0 

From Eqs. (18a-b), an explicit expression for the transverse displacement 𝑤̃ can be derived as 

 ∇6𝑤̃ + 𝑎1∇4𝑤̃ + 𝑎2∇2𝑤̃ + 𝑎3𝑤̃ = 0 
(19) 

  

Where 

 
𝑎1 = {

1

2𝐶
[
−𝐷2𝐺̃

𝐻
+ 𝜆 [

𝐼2𝐷2

𝐻2
+ 2𝐼22]] +

1

𝐴
[−

2𝐺̃

𝐻
+ 𝜆 [

2𝐼2

𝐻2
+ 𝐼11]]} (20a) 

 

𝑎2 = {
𝜆

2𝐶
[−2𝐼11 − 𝐼21] +

𝐷𝐺̃
𝐻

−
𝐼2𝐷𝜆
𝐻2

𝐴𝐶
[
𝜆𝐼2𝐷

𝐻2
−

𝐺̃𝐷

𝐻
] +

1

2𝐴𝐶
[−

𝐷2𝐺̃

𝐻
[𝜆 [

2𝐼2

𝐻2
+ 𝐼11] −

2𝐺̃

𝐻
]

+
𝐼2𝐷2𝜆

𝐻2
[𝜆 [

2𝐼2

𝐻2
+ 𝐼11] −

2𝐺̃

𝐻
] + 2𝐼22𝜆 [−

2𝐺̃

𝐻
+ 𝜆 [

2𝐼2

𝐻2
+ 𝐼11]]]} 

(20b) 

 
𝑎3 = {

1

2𝐴𝐶
[−2𝐼11𝜆 [𝜆 [

2𝐼2

𝐻2
+ 𝐼11] −

2𝐺̃

𝐻
] − 𝐼21𝜆 [−

2𝐺̃

𝐻
+ 𝜆 [

2𝐼2

𝐻2
+ 𝐼11]]] (20c) 

 

The solution of Eqs. (19) may be expressed as [20] 
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 𝑤̃ = 𝑤̃1 + 𝑤̃2 + 𝑤̃3 
(21) 

 

Where 

 𝑤̃1 = 𝑐1𝐼0(√𝛼1𝑟) (22a) 

 𝑤̃2 = 𝑐2𝐼0(√𝛼2𝑟) (22b) 

 𝑤̃3 = 𝑐3𝐼0(√𝛼3𝑟) (22c) 

 

where 𝑐1, 𝑐2, 𝑐3 are the constant coefficients, 𝐼0 is the zero-order of the first type of modified 

Bessel function and 𝛼1, 𝛼2, 𝛼3 are the roots of the equation as 

 s3 + 𝑎1s2 + 𝑎2𝑠 + 𝑎3 = 0 
(23) 

 

Also, in order to obtain the PIDF and AIDF functions as the 𝑓 and 𝑔, Eq.(16a) and (17)should be 

solved as 

 
𝑓 = 𝑐4𝐽1 (√

𝜆𝐼11

𝐴
𝑟) (24a) 

 
𝑔 =

1

𝑟
 ∫ 𝑟𝑝𝑑𝑟

𝑟

0

 (24b) 

 

where 𝐽1 is the first order of the first type of Bessel function. Also, the 𝑐𝑖 (𝑖 = 1 − 4) is the mode 

shape coefficient showing the various shapes of plate vibration modes. Values of these 

coefficients can be determined by solving the forced vibration problem. 

Finally, using Eqs. (24) into (14), the in-plane displacements of the elastic layers can be 

presented as 

 𝑢̃(1) =
𝑓 + 𝑔

2
 (25a) 

 𝑢̃(3) =
𝑓 − 𝑔

2
 (25b) 

 

By applying an arbitrary boundary condition at the outer edge of the plate, the following 

homogenous linear algebraic equations is found as 

 

 

4 4 4 1

4 1 1 2 3 4

. 0

, , ,
T

C

C c c c c

 



 


 (26) 

where M is the coefficients matrix and a function of 
2  only. To obtain a nontrivial solution for 

Eq. (26), the determinant of M must be equal to zero. Therefore, the roots of this equation will be 



S.M. Alavi et al. / Journal of Theoretical and Applied Vibration and Acoustics 6(2) 233-248 (2020) 

242 

 

2 . The natural frequencies 𝜔𝑛 and corresponding loss factors  𝜂𝑛 can be subsequently extracted 

by the complex eigenvalue  𝜆 = 𝑅𝑒(𝜆) + 𝑖 𝐼𝑚(𝜆), 𝑖 = √−1 as [3] 

 
𝜔𝑛 = √𝑅𝑒(𝜆2)   ,        𝜂𝑛 =

𝐼𝑚(𝜆2) 

𝑅𝑒(𝜆2)
 (27) 

 

3. Results and discussion 

First, in order to assess the validity and accuracy of the present approach, we compared the first, 

second, and third axisymmetric vibration modes of a sandwich solid circular plate with a finite 

element analysis carried out in ABAQUS software. A circular plate with three layers was 

modelled in the software. The top and bottom layers were composed of aluminum having the 

material properties as 𝜈 = 0.3, 𝜌 = 2700 𝑘𝑔 ⁄ 𝑚3, 𝐸 = 70 𝐺𝑃𝑎  and a core layer was composed 

of MRF-122EG with  𝜈 = 0.3 ,  𝜌 = 2300
𝑘𝑔

𝑚3⁄ , 𝐸 = 2.2698 𝑀𝑃𝑎. Three types of edge 

boundary conditions as simply supported, clamped, and free were imposed to the plate’s outer 

edge. In the software, no tension and linear elastic behavior assumptions were supposed for the 

MRF core layer. The 3D stress element was employed. In Table 1, the magnetic flux density was 

zero and ℎ = 2 𝑚𝑚, 𝑅 = 0.1𝑚. The results showed very good closeness between the present 

method and the finite element approach. The error percentages between the present results and 

FEM ones were less than 4%. These error percentages were calculated as  

 𝐸𝑟𝑟𝑜𝑟 (%) =
𝐹𝐸𝑀 − 𝑃𝑟𝑒𝑠𝑒𝑛𝑡

𝐹𝐸𝑀
 × 100 (28) 

Also, a comparison study was performed between the present results and those of Eshaghi et al. 

[3] in Table 2. Results reported by the reference [3] were calculated by experimental and 

numerical approaches. The following material and geometry parameters were considered for this 

case: 𝑅 = 50 𝑚𝑚, 𝐻 = ℎ = 0.5 𝑚𝑚, 𝜈 = 0.35 ,  𝜌1 = 𝜌3 = 1600 𝑘𝑔/𝑚3, 𝐸 = 2.2 𝐺𝑃𝑎 ,  𝜌2 =
2500 𝑘𝑔/𝑚3 and 𝐺∗, 𝐺 = (𝑎0 + 𝑎1𝐵 + 𝑎2𝐵2)(1 − 𝑒−𝑎3𝜔) where 𝑎𝑖  (𝑖 = 0,1,2,3) are constants 

as 𝑎0 = 97905.69 , 𝑎1 = 6744.595 , 𝑎2 = 92.75970, 𝑎3 = 0.007328 for the storage modulus 

𝐺∗ and 𝑎0 = 41281.45  , 𝑎1 = 1807.337, 𝑎2 = 8.470100, 𝑎3 = 0.006500 for the loss modulus 

𝐺. The boundary condition of plate’s outer edge was free. The results revealed that the present 

results were very close to those of Eshaghi et al. [3]. Therefore, the reliability of the approach 

was validated. The error percentages presented in Table 2 were calculated as  

 
Error 1 (%) =

Experiment [3] − Present

Experiment [3]
 × 100 

(29) 
 

Error 2 (%) =
Ritz [3] − Present

Ritz [3]
 × 100 

In Figs. 2, 3, and 4, the top and bottom layers were composed of aluminum having the material 

properties as 𝜈 = 0.3, 𝜌 = 2700 𝑘𝑔 ⁄ 𝑚3, 𝐸 = 70 𝐺𝑃𝑎  and the MRF layer was composed of 

MRF-122EG with the material properties mentioned in Eqs. (5). Figs. 2 reports the fundamental 

natural frequency (Hz) and corresponding loss factor versus the plate radius R(m) when 

H 1.5mm , h 2mm  and B 20mT . It is noticeable that the natural frequencies and the loss 

factors are defined as the ratio of total strain energy to the total kinetic energy and the ratio of 
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energy dissipated per radian to the total strain energy, respectively. The results of Fig. 2 show 

that when the radius of plate R increases, the structural stiffness decreases, leading to a decrease 

in the total strain energy. Hence, according to the aforementioned definitions of the natural 

frequencies and loss factors, the fundamental natural frequency decreased and the corresponding 

loss factor increased. Also, Fig. 2b reveals that the loss factors suddenly decrease when the edge 

boundary condition changes from the simply supported to the clamped. This shows that 

according to Eq. (2a), the slope of the plate 
𝜕𝑤

𝜕𝑟
 has a significant role in the dissipated energy of 

the sandwich circular plate. 

Table 1. The first three natural frequencies ( )n Hz  of MRF sandwich solid circular plate when ℎ = 2 𝑚𝑚, 𝑅 =

0.1𝑚, 𝐵 = 0. 

Boundary 

condition 

H 

(mm) 

First mode  Second mode  Third mode 

FEM Present 
Error 

(%) 

 
FEM Present 

Error 

(%) 

 
FEM Present 

Error 

(%) 

Clamped 

1 467.85 466.37 0.32  1786.6 1783.9 0.15  3961.8 3977.2 -0.39 

1.5 447.58 446.11 0.33  1709.7 1709.2 0.03  3772.5 3809.9 -0.99 

2 430.32 428.90 0.33  1641.3 1643.7 -0.15  3589.1 3662.9 -2.06 

             

Simply 

supported 

1 238.49 239.06 -0.24  1338.0 1340.1 -0.16  3297.3 3314.3 -0.52 

1.5 227.21 227.49 -0.12  1280.6 1283.2 -0.20  3146.3 3174.6 -0.90 

2 218.31 218.48 -0.08  1230.4 1233.7 -0.27  3004.6 3053.3 -1.62 

             

Free 

1 433.56 434.71 -0.27  1732.2 1667.9 3.71  3896.8 3920.9 -0.62 

1.5 413.11 413.76 -0.16  1656.9 1661.5 -0.28  3711.1 3756.1 -1.21 

2 396.92 397.46 -0.14  1590.7 1596.8 -0.38  3532.4 3609.4 -2.18 

 

Fig. 3 depicts the fundamental natural frequency (Hz) and loss factor values when the MRF 

thickness H(mm) changes from 0.5 mm to 5 mm. According to Fig. 3(a), by increasing H, the 

kinetic energy of the structure in comparison with its strain energy increased more, leading to a 

decrease in the natural frequency. Also, Fig. 3(b) shows that when H increases from 0.5 mm to 2 

mm (nearly equals to the skin thickness), the loss factor decreases due to increasing the total 

strain energy. But for H values greater than 2 mm, the loss factor increases monotonically. This 

is because the increase in the dissipated energy is greater than the increase in the total strain 

energy. It is worth mentioning that the natural frequency is not very sensitive to change of H, 

whereas the corresponding loss factor is influenced more. 
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Table 2. Comparison of first axisymmetric natural frequency Hz of MRF sandwich circular plate. 

B (mT) 
Method   

Experiment [3] Ritz [3] Present Error 1 (%) Error 2 (%) 

0 127.20 118.26 117.11 7.93 0.97 

10 140.60 137.35 135.24 3.81 1.54 

20 152.40 155.90 150.87 1.00 3.23 

30 167.80 172.48 161.54 3.73 6.34 

 

 

(a) 

 

(b) 
 

 

Fig. 2. The fundamental natural frequency (Hz) and loss factor versus the plate radius R(m) for the MR sandwich 

solid circular plate when H 1.5mm , h 2mm  and B 20mT . 

 

Fig. 4 presents the fundamental natural frequency (Hz) and loss factor changes with respect to 

the magnetic field intensity B (mT). Regardless of boundary conditions, the fundamental natural 

frequency and corresponding loss factor initially increase and then decrease slightly when the B 

is increased. This is due to the direct dependency of the fundamental natural frequency and loss 

factor to the storage modulus 𝐺∗ and the loss modulus 𝐺, respectively. So that similar to the 

storage modulus 𝐺∗ and the loss modulus 𝐺, the fundamental natural frequency and loss factor 

also change according to a quadratic function of the B (see Eq. (5)) with the maximum values at 

about B=74 mT and B=45 mT, respectively. 

Finally, in order to create better insight and understanding about the axisymmetric mode shapes 

for researchers and engineers who will read this paper, Fig. 5 is provided to present the first three 

axisymmetric mode shapes of the sandwich plates considered in Table 1. 
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(a) 

 

(b) 

 

 

Fig. 3. The fundamental natural frequency (Hz) and loss factor versus the MRF thickness H(mm) for the MR 

sandwich solid circular plate when R 0.1m , h 2mm  and B 20mT . 
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(a) 

 

(b) 

 

Fig. 4. The fundamental natural frequency (Hz) and loss factor versus the magnetic field intensity B(mT) for the MR 

sandwich solid circular plate when R 0.1m , h 2mm  and H 1.5mm . 
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Clamped (first mode) Clamped (second mode) Clamped (third mode) 

   

Simply supported (first mode) Simply supported (second mode) Simply supported (third mode) 

   

Free (first mode) Free (second mode) Free (third mode) 

Fig. 5. 3D view of first three mode shapes of an MRF sandwich solid circular plate 

4. Conclusion 

The scope of this research was to obtain a fully-analytical approach for axisymmetric free 

vibration of the MRF sandwich circular plates based on the thin sandwich plate theory. By 

introducing two-phase and anti-phase in-plane displacement functions as well as using some 

mathematical operations in the polar coordinate, the transverse displacement of the plate was 

initially extracted. Then, the in-plane displacements of the face elastic layers were analytically 

derived so as to extract the frequency equation employing the Bessel functions. The validation 

results reported a high accuracy for the present exact closed-form solution. The results of figures 

2, 3, and 4 show that the natural frequencies and corresponding loss factors are strongly 

influenced by the clamped boundary condition. This happens because the shear strain in the 

MRF layer is significantly affected by the slope of the plate (see equation 2a). Variations of the 

MRF layer thickness and the magnetic field intensity affect the loss factor more than the natural 

frequency. Nevertheless, the radius of the plate causes a significant change in both the natural 

frequency and corresponding loss factor. 
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