Study on the dynamic behavior of cylindrical steel liquid storage tanks using finite element method


1 Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

2 Department of Civil Engineering, Jundi-Shapur University of Technology, Dezful, Iran

3 Department of Irigation Engineering, Aburaihan Campus, Tehran University, Tehran, Iran


Dynamic behavior of ground supported cylindrical storage tanks (CST) is of crucial importance because of its applications in industrial complexes. Seismic behavior of tanks is greatly affected by the height to diameter ratio, fluid height and fluid type. Five CSTs with different height to diameter ratios, three CSTs with the same height and diameters but various fluid heights and one CST with two different fluid types are selected to determine the effect of height to diameter ratio, fluid heights, and fluid type on the seismic behavior of the tanks respectively. Static, modal, response spectrum, and time history analyses are used in this study for the selected CSTs using ANSYS finite element software. In the time history analysis method, the Tabas, Kobe and Cape Mendocino earthquake records have been utilized on the first five CSTs to ascertain the effect of height to diameter ratio and the Tabas earthquake record is used for the rest of CSTs. Results show that an increase in fluid height lead to a corresponding increase in the base shear. Based on observations, 100 percent increase in the diameter showed 63 percent increase in sloshing under the response spectrum and 70 percent under time history analyses. Based on static and response spectrum analyses, the highest values of displacements are obtained at the lowest part of the tanks, while in time history analysis, the highest is obtained at the top of the tanks. All analyses showed that the maximum stress occurred at the height of 1 to 2 meter from the bottom of the tanks.


  • Dynamics of tanks depend on the peak ground acceleration of an earthquake.
  • Increasing the tank diameter leads to an increase in tensile stress and sloshing.
  • The highest values of displacements were observed at the top of the tanks.
  • Increasing the fluid density increases the peak displacement and tensile stresses.
  • The maximum stress occurred at the height of 1-2 m from the tank’s bottom.


Main Subjects

[1] A. Bayraktar, B. Sevim, A.C. Altunışık, T. Türker, Effect of the model updating on the earthquake behavior of steel storage tanks, Journal of Constructional Steel Research, 66 (2010) 462-469.
[2] M.R. Shekari, N. Khaji, M.T. Ahmadi, On the seismic behavior of cylindrical base-isolated liquid storage tanks excited by long-period ground motions, Soil Dynamics and Earthquake Engineering, 30 (2010) 968-980.
[3] H. Akatsuka, H. Kobayashi, Fire of petroleum tank, etc. by Niigata earthquake, in, Failure Knowledge Database, Japan Science and Technology Agency, 2008.
[4] G.W. Housner, The dynamic behavior of water tanks, Bulletin of the seismological society of America, 53 (1963) 381-387.
[5] N.W. Edwards, A procedure for the dynamic analysis of thin walled cylindrical liquid storage tanks subjected to lateral ground motions, in, University of Michigan, Ann Arbor, MI, USA, 1969.
[6] N.M. Newmark, E. Rosenblueth, Fundamentals of earthquake engineering, Prentice-Hall Civil engineering and engineering mechanics series, 12 (1971).
[7] J.Y. Yang, Dynamic behavior of fluid-tank systems, in:  Civil and Environmental Engineering Rice University, Houston, Texas, USA, 1976.
[8] A.S. Veletsos, J. Auyang, Earthquake response of liquid storage tanks, in:  Advances in Civil Engineering through Engineering Mechanics, ASCE, 1977, pp. 24.
[9] A.S. Veletsos, A. Kumar, Dynamic response of vertically excited liquid storage tanks, in:  Proceedings of the eighth world conference on earthquake engineering, San Francisco, California, USA, 1984, pp. 453-459.
[10] F.H. Hamdan, Seismic behaviour of cylindrical steel liquid storage tanks, Journal of Constructional Steel Research, 53 (2000) 307-333.
[11] E.C.f. Standardization, Eurocode 8: Design of structures for earthquake resistance, in:  Part 4: Silos, tanks and pipelines EN 1998-4:2006 (E), 2006.
[12] J.C. Virella, L.A. Godoy, L.E. Suárez, Fundamental modes of tank-liquid systems under horizontal motions, Engineering Structures, 28 (2006) 1450-1461.
[13] Z. Ozdemir, M. Souli, Y.M. Fahjan, Application of nonlinear fluid–structure interaction methods to seismic analysis of anchored and unanchored tanks, Engineering Structures, 32 (2010) 409-423.
[14] N. Buratti, M. Tavano, Dynamic buckling and seismic fragility of anchored steel tanks by the added mass method, Earthquake Engineering & Structural Dynamics, 43 (2014) 1-21.
[15] M. Ormeño, T. Larkin, N. Chouw, Evaluation of seismic ground motion scaling procedures for linear time-history analysis of liquid storage tanks, Engineering Structures, 102 (2015) 266-277.
[16] R.O. Ruiz, D. Lopez-Garcia, A.A. Taflanidis, An efficient computational procedure for the dynamic analysis of liquid storage tanks, Engineering Structures, 85 (2015) 206-218.
[17] J.I. Colombo, J.L. Almazán, Seismic reliability of continuously supported steel wine storage tanks retrofitted with energy dissipation devices, Engineering Structures, 98 (2015) 201-211.
[18] M.R. Kianoush, J.Z. Chen, Effect of vertical acceleration on response of concrete rectangular liquid storage tanks, Engineering Structures, 28 (2006) 704-715.
[19] R. Livaoglu, T. Cakir, A. Dogangun, M. Aytekin, Effects of backfill on seismic behavior of rectangular tanks, Ocean Engineering, 38 (2011) 1161-1173.
[20] M.R. Kianoush, A.R. Ghaemmaghami, The effect of earthquake frequency content on the seismic behavior of concrete rectangular liquid tanks using the finite element method incorporating soil–structure interaction, Engineering Structures, 33 (2011) 2186-2200.
[21] O.C. Zienkiewicz, R.L. Taylor, The finite element method, Butterworth-heinemann, Linacre House, Jordan Hill, Oxford OX2 8DP, 2000.
[22] M. Moslemi, M.R. Kianoush, Parametric study on dynamic behavior of cylindrical ground-supported tanks, Engineering Structures, 42 (2012) 214-230.
[23] A.K. Chopra, Dynamics of structures, Prentice Hall New Jersey, 1995.
[24] A.S. 650, Welded steel tanks for oil storage. 11th ed., American Petroleum Institute, Washington, D.C., USA., (2008).
[25] ANSYS Release 12.0 Documentation, in, 2009.